Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775712

RESUMO

Synthetic side-on peroxide-bound dicopper(II) (SP) complexes are important for understanding the active site structure/function of many copper-containing enzymes. This work highlights the formation of new {CuII(µ-η2:η2-O22-)CuII} complexes (with electronic absorption and resonance Raman (rR) spectroscopic characterization) using tripodal N3ArOH ligands at -135 °C, which spontaneously participate in intramolecular phenolic H-atom abstraction (HAA). This results in the generation of bis(phenoxyl radical)bis(µ-OH)dicopper(II) intermediates, substantiated by their EPR/UV-vis/rR spectroscopic signatures and crystal structural determination of a diphenoquinone dicopper(I) complex derived from ligand para-C═C coupling. The newly observed chemistry in these ligand-Cu systems is discussed with respect to (a) our Cu-MeAN (tridentate N,N,N',N',N″-pentamethyldipropylenetriamine)-derived model SP species, which was unreactive toward exogenous monophenol addition (J. Am. Chem. Soc. 2012, 134, 8513-8524), emphasizing the impact of intramolecularly tethered ArOH groups, and (b) recent advances in understanding the mechanism of action of the tyrosinase (Ty) enzyme.

2.
J Am Chem Soc ; 146(19): 13066-13082, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688016

RESUMO

Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.

3.
J Inorg Biochem ; 249: 112367, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742491

RESUMO

Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) â†’ PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo­copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo­copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oxigênio , Oxigênio/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Cobre/química , Compostos Férricos/química , Prótons , Heme/química , Água/metabolismo , Oxirredução
4.
Acc Chem Res ; 56(16): 2197-2212, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527056

RESUMO

In this Account, we overview and highlight synthetic bioinorganic chemistry focused on initial adducts formed from the reaction of reduced ligand-copper(I) coordination complexes with molecular oxygen, reactions that produce ligand-CuII(O2•-) complexes (O2•- ≡ superoxide anion). We provide mostly a historical perspective, starting in the Karlin research group in the 1980s, emphasizing the ligand design and ligand effects, structure, and spectroscopy of these O2 adducts and subsequent further reactivity with substrates, including the interaction with a second ligand-CuI complex to form binuclear species. The Account emphasizes the approach, evolution, and results obtained in the Karlin group, a synthetic bioinorganic research program inspired by the state of knowledge and insights obtained on enzymes possessing copper ion active sites which process molecular oxygen. These constitute an important biochemistry for all levels/types of organisms, bacteria, fungi, insects, and mammals, including humans.Copper is earth abundant, and its redox properties in complexes allow for facile CuII/CuI interconversions. Simple salts or coordination complexes have been well known to serve as oxidants for the stoichiometric or catalytic oxidation or oxygenation (i.e., O-atom insertion) of organic substrates. Thus, copper dioxygen- or peroxide-centered synthetic bioinorganic studies provide strong relevance and potential application to synthesis or even the development of cathodic catalysts for dioxygen reduction to hydrogen peroxide or water, as in fuel cells. The Karlin group's focus however was primarily oriented toward bioinorganic chemistry with the goal to provide fundamental insights into the nature of copper-dioxygen adducts and further reduced and/or protonated derivatives, species likely occurring in enzyme turnover or related in one or more aspects of formation, structure, spectroscopic properties, and scope of reactivity toward organic/biochemical substrates.Prior to this time, the 1980s, O2 adducts of redox-active first-row transition-metal ions focused on iron, such as the porphyrinate-Fe centers occurring in the oxygen carrier proteins myoglobin and hemoglobin and that determined to occur in cytochrome P-450 monooxygenase turnover. Deoxy (i.e., reduced Fe(II)) heme proteins react with O2, giving FeIII-superoxo complexes (preferably referred to by traditional biochemists as ferrous-oxy species). And, it was in the 1970s that great strides were made by synthetic chemists in generating hemes capable of forming O2 adducts, their physiochemical characterization providing critical insights to enzyme (bio)chemistry and providing ideas and important goals leading to countless person years of future research.


Assuntos
Cobre , Ligantes , Cobre/química , Oxigênio/química , Superóxidos/química , Modelos Moleculares , Metaloendopeptidases/metabolismo , Oxigenases de Função Mista/metabolismo , Domínio Catalítico , Ligação de Hidrogênio
5.
J Am Chem Soc ; 145(21): 11735-11744, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195014

RESUMO

Lytic polysaccharide monooxygenases have received significant attention as catalytic convertors of biomass to biofuel. Recent studies suggest that its peroxygenase activity (i.e., using H2O2 as an oxidant) is more important than its monooxygenase functionality. Here, we describe new insights into peroxygenase activity, with a copper(I) complex reacting with H2O2 leading to site-specific ligand-substrate C-H hydroxylation. [CuI(TMG3tren)]+ (1) (TMG3tren = 1,1,1-Tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) and a dry source of hydrogen peroxide, (o-Tol3P═O·H2O2)2 react in the stoichiometry, [CuI(TMG3tren)]+ + H2O2 → [CuI(TMG3tren-OH)]+ + H2O, wherein a ligand N-methyl group undergoes hydroxylation giving TMG3tren-OH. Furthermore, Fenton-type chemistry (CuI + H2O2 → CuII-OH + ·OH) is displayed, in which (i) a Cu(II)-OH complex could be detected during the reaction and it could be separately isolated and characterized crystallographically and (ii) hydroxyl radical (·OH) scavengers either quenched the ligand hydroxylation reaction and/or (iii) captured the ·OH produced.


Assuntos
Cobre , Peróxido de Hidrogênio , Cobre/química , Peróxido de Hidrogênio/química , Hidroxilação , Ligantes , Oxigenases de Função Mista/química , Radical Hidroxila/química , Oxirredução
6.
J Am Chem Soc ; 145(4): 2230-2242, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652374

RESUMO

Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(µ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(µ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(µ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.

8.
Faraday Discuss ; 234(0): 388-404, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507381

RESUMO

This paper overviews the final remarks lecture delivered (by K. D. K.) at the end of this bioinorganic chemistry Faraday Discussion, held online for a worldwide audience from January 31 - February 3, 2022. This paper provides discussion in six sections: (1) the Introductory lecture, from Ed Solomon, emphasized past and present uses of advanced spectroscopic methods and theoretical approaches to elucidate metalloenzyme active site structure, physical properties and function. (2) The discussion topics are divided into groups having similar research themes, as seen from this author's perspective. Emphasis is given to the non-heme iron group of articles with dioxygen activation research. (3) Small molecule activation (e.g., N2, CO2 and O2 reduction; CH4 or H2O oxidation) is widely covered in this discussion; this authors' view of the important reactions in bioinorganic chemistry is discussed. (4) We discuss current practice and vision for employing materials chemistry to widely apply to electrocatalytic methods to effect small molecule activation (as above) to fulfill societal energy demands. (5) A discussion is given on the topic of synthetic models and the approach utilized therein. (6) New research on the authors' synthetic modeling is presented; preliminary results are given in the area of copper mediated peroxide activation.


Assuntos
Cobre , Oxigênio , Cobre/química , Oxirredução , Oxigênio/química
12.
J Am Chem Soc ; 144(1): 377-389, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34981938

RESUMO

In this report, we investigate the physical and chemical properties of monocopper Cu(I) superoxo and Cu(II) peroxo and hydroperoxo complexes. These are prepared by cryoreduction/annealing of the parent [LCuI(O2)]+ Cu(I) dioxygen adducts with the tripodal, N4-coordinating, tetradentate ligands L = PVtmpa, DMMtmpa, TMG3tren and are best described as [LCuII(O2•-)]+ Cu(II) complexes that possess end-on (η1-O2•-) superoxo coordination. Cryogenic γ-irradiation (77 K) of the EPR-silent parent complexes generates mobile electrons from the solvent that reduce the [LCuII(O2•-)]+ within the frozen matrix, trapping the reduced form fixed in the structure of the parent complex. Cryoannealing, namely progressively raising the temperature of a frozen sample in stages and then cooling back to low temperature at each stage for examination, tracks the reduced product as it relaxes its structure and undergoes chemical transformations. We employ EPR and ENDOR (electron-nuclear double resonance) as powerful spectroscopic tools for examining the properties of the states that form. Surprisingly, the primary products of reduction of the Cu(II) superoxo species are metastable cuprous superoxo [LCuI(O2•-)]+ complexes. During annealing to higher temperatures this state first undergoes internal electron transfer (IET) to form the end-on Cu(II) peroxo state, which is then protonated to form Cu(II)-OOH species. This is the first time these methods, which have been used to determine key details of metalloenzyme catalytic cycles and are a powerful tools for tracking PCET reactions, have been applied to copper coordination compounds.


Assuntos
Cobre
13.
Inorg Chem ; 60(18): 13876-13887, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34097396

RESUMO

The efficiency of the hydrogen evolution reaction (HER) can be facilitated by the presence of proton-transfer groups in the vicinity of the catalyst. A systematic investigation of the nature of the proton-transfer groups present and their interplay with bulk proton sources is warranted. The HERs electrocatalyzed by a series of iron porphyrins that vary in the nature and number of pendant amine groups are investigated using proton sources whose pKa values vary from ∼9 to 15 in acetonitrile. Electrochemical data indicate that a simple iron porphyrin (FeTPP) can catalyze the HER at this FeI state where the rate-determining step is the intermolecular protonation of a FeIII-H- species produced upon protonation of the iron(I) porphyrin and does not need to be reduced to its formal Fe0 state. A linear free-energy correlation of the observed rate with pKa of the acid source used suggests that the rate of the HER becomes almost independent of pKa of the external acid used in the presence of the protonated distal residues. Protonation to the FeIII-H- species during the HER changes from intermolecular in FeTPP to intramolecular in FeTPP derivatives with pendant basic groups. However, the inclusion of too many pendant groups leads to a decrease in HER activity because the higher proton binding affinity of these residues slows proton transfer for the HER. These results enrich the existing understanding of how second-sphere proton-transfer residues alter both the kinetics and thermodynamics of transition-metal-catalyzed HER.

14.
J Am Chem Soc ; 143(10): 3707-3713, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33684290

RESUMO

The central role of cupric superoxide intermediates proposed in hormone and neurotransmitter biosynthesis by noncoupled binuclear copper monooxygenases like dopamine-ß-monooxygenase has drawn significant attention to the unusual methionine ligation of the CuM ("CuB") active site characteristic of this class of enzymes. The copper-sulfur interaction has proven critical for turnover, raising still-unresolved questions concerning Nature's selection of an oxidizable Met residue to facilitate C-H oxygenation. We describe herein a model for CuM, [(TMGN3S)CuI]+ ([1]+), and its O2-bound analog [(TMGN3S)CuII(O2•-)]+ ([1·O2]+). The latter is the first reported cupric superoxide with an experimentally proven Cu-S bond which also possesses demonstrated hydrogen atom abstraction (HAA) reactivity. Introduction of O2 to a precooled solution of the cuprous precursor [1]B(C6F5)4 (-135 °C, 2-methyltetrahydrofuran (2-MeTHF)) reversibly forms [1·O2]B(C6F5)4 (UV/vis spectroscopy: λmax 442, 642, 742 nm). Resonance Raman studies (413 nm) using 16O2 [18O2] corroborated the identity of [1·O2]+ by revealing Cu-O (446 [425] cm-1) and O-O (1105 [1042] cm-1) stretches, and extended X-ray absorption fine structure (EXAFS) spectroscopy showed a Cu-S interatomic distance of 2.55 Å. HAA reactivity between [1·O2]+ and TEMPO-H proceeds rapidly (1.28 × 10-1 M-1 s-1, -135 °C, 2-MeTHF) with a primary kinetic isotope effect of kH/kD = 5.4. Comparisons of the O2-binding behavior and redox activity of [1]+ vs [2]+, the latter a close analog of [1]+ but with all N atom ligation (i.e., N3S vs N4), are presented.


Assuntos
Cobre/química , Hidrogênio/química , Sulfetos/química , Superóxidos/química , Teoria da Densidade Funcional , Cinética , Conformação Molecular , Oxirredução , Espectrofotometria Ultravioleta
15.
Angew Chem Int Ed Engl ; 60(11): 5907-5912, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33348450

RESUMO

A new end-on low-spin ferric heme peroxide, [(PIm )FeIII -(O22- )]- (PIm -P), and subsequently formed hydroperoxide species, [(PIm )FeIII -(OOH)] (PIm -HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm )FeIII -(O2⋅- )] (PIm -S) reduction potential (E°') and the PIm -HP pKa value, lead to the finding of the OO-H bond-dissociation free energy (BDFE) of PIm -HP as 69.5 kcal mol-1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm -S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8 )FeIII -(O2.- )] (S) (F8 =tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm -S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.


Assuntos
Compostos Férricos/metabolismo , Heme/metabolismo , Peróxidos/metabolismo , Superóxidos/metabolismo , Termodinâmica , Compostos Férricos/química , Heme/química , Hidrogênio/química , Hidrogênio/metabolismo , Estrutura Molecular , Oxirredução , Peróxidos/química , Espectrofotometria Ultravioleta , Superóxidos/química
16.
Inorg Chem ; 59(22): 16567-16581, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33136386

RESUMO

Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kß X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kß XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kß XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kß2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kß2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kß XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kß2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kß XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.


Assuntos
Cobre/metabolismo , Galactose Oxidase/metabolismo , Cobre/química , Teoria da Densidade Funcional , Galactose Oxidase/química , Oxigênio/química , Oxigênio/metabolismo , Espectrometria por Raios X
17.
J Am Chem Soc ; 142(6): 3104-3116, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31913628

RESUMO

Establishing redox and thermodynamic relationships between metal-ion-bound O2 and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F8)FeIII-(O22-)]- (P) (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F8)FeIII-(O2•-)] (S), are shown to be redox interconvertible. Using Cr(η-C6H6)2, an equilibrium state where S and P are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of S as -1.17 V vs Fc+/0. P could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F8)FeIII-(OOH)] (HP). Partial conversion of HP back to P using a derivatized phosphazene base gave a P/HP equilibrium mixture, leading to the determination of pKa = 28.8 for HP (THF, -80 °C). With the measured reduction potential and pKa, the O-H bond dissociation free energy (BDFE) of hydroperoxide species HP was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of HP, in fact, lines up with an experimental demonstration of the oxidizing ability of S via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine-N-hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species HP and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, kH = 0.5, kD = 0.08 M-1 s-1 (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by S being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that FeIII-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.


Assuntos
Compostos Férricos/química , Óxido Ferroso-Férrico/química , Heme/química , Peróxido de Hidrogênio/química , Superóxidos/química , Termodinâmica , Complexos de Coordenação/química
18.
Inorg Chem ; 58(20): 13746-13750, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31580063

RESUMO

The reaction of p-cyano-N,N-dimethylaniline N-oxide, an O-atom donor, with different copper(I) complexes (at room temperature and in acetone) indicates the formation via O-atom transfer of a high-valent copper oxyl species, CuII-O•, a putative key intermediate in the catalytic cycle of copper-containing monooxygenases. The formation of p-cyano-N-hydroxymethyl-N-methylaniline and p-cyano-N-methylaniline as the main products of the reaction highlight the capability of this species to hydroxylate strong C-H bonds (bond dissociation energy ∼ 90 kcal/mol). A plausible mechanism for the reactivity of this catalytic system is proposed.

19.
J Am Chem Soc ; 141(45): 17962-17967, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621325

RESUMO

A cuprous chelate bearing a secondary sphere hydrogen bonding functionality, [(PV-tmpa)CuI]+, transforms •NO(g) to N2O(g) in high-yields in methanol. Ligand derived proton transfer facilitates N-O bond cleavage of a putative hyponitrite intermediate releasing N2O(g), underscoring the crucial balance between H-bonding capabilities and acidities in (bio)chemical •NO(g) coupling systems.


Assuntos
Complexos de Coordenação/química , Óxido Nítrico/química , Óxido Nitroso/síntese química , Cobre/química , Ligação de Hidrogênio , Ligantes , Oxirredução , Prótons
20.
Inorg Chem ; 58(22): 15423-15432, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31657921

RESUMO

The focus of this study is in the description of synthetic heme/copper/O2 chemistry employing a heme-containing binucleating ligand which provides a tridentate chelate for copper ion binding. The addition of O2 (-80 °C, tetrahydrofuran (THF) solvent) to the reduced heme compound (PImH)FeII (1), gives the oxy-heme adduct, formally a heme-superoxide complex FeIII-(O2•-) (2) (resonance Raman spectroscopy (rR): νO-O, 1171 cm-1 (Δ18O2, -61 cm-1); νFe-O, 575 cm-1 (Δ18O2, -24 cm-1)). Simple warming of 2 to room temperature regenerates reduced complex 1; this reaction is reversible, as followed by UV-vis spectroscopy. Complex 2 is electron paramagnetic resonance (EPR)-silent and exhibits upfield-shifted pyrrole resonances (δ 9.12 ppm) in 2H NMR spectroscopy, indicative of a six-coordinate low-spin heme. The coordination of the tethered imidazolyl arm to the heme-superoxide complex as an axial base ligand is suggested. We also report the new fully reduced heme-copper complex [(PImH)FeIICuI]+ (3), where the copper ion is bound to the tethered tridentate portion of PImH. This reacts with O2 to give a distinctive low-temperature-stable, high-spin (S = 2, overall) peroxo-bridged complex [(PImH)FeIII-(O22-)-CuII]+ (3a): λmax, 420 (Soret), 545, 565 nm; δpyrr, 93 ppm; νO-O, 799 cm-1 (Δ18O2, -48 cm-1); νFe-O, 524 cm-1 (Δ18O2, -23 cm-1). To 3a, the addition of dicyclohexylimidazole (DCHIm), which serves as a heme axial base, leads to low-spin (S = 0 overall) species complex [(DCHIm)(PImH)FeIII-(O22-)-CuII]+ (3b): λmax, 425 (Soret), 538 nm; δpyrr, 10.2 ppm; νO-O, 817 cm-1 (Δ18O2, -55 cm-1); νFe-O, 610 cm-1 (Δ18O2, -26 cm-1). These investigations into the characterization of the O2-adducts from (PImH)FeII (1) with/without additional copper chelation advance our understanding of the dioxygen reactivity of heme-only and heme/Cu-ligand heterobinuclear system, thus potentially relevant to O2 reduction in heme-copper oxidases or fuel-cell chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA