Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 135(19): 2243-2263, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34569605

RESUMO

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Humanos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos NOD , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fosforilação , Ratos Sprague-Dawley , Proteína S6 Ribossômica/metabolismo
2.
Metabolomics ; 12(12): 177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27738410

RESUMO

INTRODUCTION: The Elongator complex, comprising six subunits (Elp1p-Elp6p), is required for formation of 5-carbamoylmethyl (ncm5) and 5-methoxycarbonylmethyl (mcm5) side chains on wobble uridines in 11 out of 42 tRNA species in Saccharomyces cerevisiae. Loss of these side chains reduces the efficiency of tRNA decoding during translation, resulting in pleiotropic phenotypes. Overexpression of hypomodified [Formula: see text], which in wild-type strains are modified with mcm5s2U, partially suppress phenotypes of an elp3Δ strain. OBJECTIVES: To identify metabolic alterations in an elp3Δ strain and elucidate whether these metabolic alterations are suppressed by overexpression of hypomodified [Formula: see text]. METHOD: Metabolic profiles were obtained using untargeted GC-TOF-MS of a temperature-sensitive elp3Δ strain carrying either an empty low-copy vector, an empty high-copy vector, a low-copy vector harboring the wild-type ELP3 gene, or a high-copy vector overexpressing [Formula: see text]. The temperature sensitive elp3Δ strain derivatives were cultivated at permissive (30 °C) or semi-permissive (34 °C) growth conditions. RESULTS: Culturing an elp3Δ strain at 30 or 34 °C resulted in altered metabolism of 36 and 46 %, respectively, of all metabolites detected when compared to an elp3Δ strain carrying the wild-type ELP3 gene. Overexpression of hypomodified [Formula: see text] suppressed a subset of the metabolic alterations observed in the elp3Δ strain. CONCLUSION: Our results suggest that the presence of ncm5- and mcm5-side chains on wobble uridines in tRNA are important for metabolic homeostasis.

3.
Biochem Biophys Res Commun ; 454(3): 441-5, 2014 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-25450681

RESUMO

Familial dysautonomia (FD) is a recessive neurodegenerative genetic disease. FD is caused by a mutation in the IKBKAP gene resulting in a splicing defect and reduced levels of full length IKAP protein. IKAP homologues can be found in all eukaryotes and are part of a conserved six subunit protein complex, Elongator complex. Inactivation of any Elongator subunit gene in multicellular organisms cause a wide range of phenotypes, suggesting that Elongator has a pivotal role in several cellular processes. In yeast, there is convincing evidence that the main role of Elongator complex is in formation of modified wobble uridine nucleosides in tRNA and that their absence will influence translational efficiency. To date, no study has explored the possibility that FD patients display defects in formation of modified wobble uridine nucleosides as a consequence of reduced IKAP levels. In this study, we show that brain tissue and fibroblast cell lines from FD patients have reduced levels of the wobble uridine nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). Our findings indicate that FD could be caused by inefficient translation due to lower levels of wobble uridine nucleosides.


Assuntos
Encéfalo/patologia , Disautonomia Familiar/patologia , Fibroblastos/patologia , RNA de Transferência/química , Tiouridina/análogos & derivados , Encéfalo/metabolismo , Linhagem Celular , Disautonomia Familiar/metabolismo , Fibroblastos/metabolismo , Humanos , RNA de Transferência/metabolismo , Tiouridina/análise , Tiouridina/metabolismo
4.
RNA Biol ; 11(12): 1519-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25607684

RESUMO

Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm(5)) and 5-carbamoylmethyl (ncm(5)) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm(5) and mcm(5) side chains at U34 and their influence on Elongator activity.


Assuntos
Histona Acetiltransferases/química , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Uridina/metabolismo , Animais , Anticódon/química , Anticódon/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Códon/química , Códon/metabolismo , Código Genético , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Uridina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA