Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(3): 1669-1677, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36776386

RESUMO

Imine reductases (IREDs) catalyze the asymmetric reduction of cyclic imines, but also in some cases the coupling of ketones and amines to form secondary amine products in an enzyme-catalyzed reductive amination (RedAm) reaction. Enzymatic RedAm reactions have typically used small hydrophobic amines, but many interesting pharmaceutical targets require that larger amines be used in these coupling reactions. Following the identification of IR77 from Ensifer adhaerens as a promising biocatalyst for the reductive amination of cyclohexanone with pyrrolidine, we have characterized the ability of this enzyme to catalyze couplings with larger bicyclic amines such as isoindoline and octahydrocyclopenta(c)pyrrole. By comparing the activity of IR77 with reductions using sodium cyanoborohydride in water, it was shown that, while the coupling of cyclohexanone and pyrrolidine involved at least some element of reductive amination, the amination with the larger amines likely occurred ex situ, with the imine recruited from solution for enzyme reduction. The structure of IR77 was determined, and using this as a basis, structure-guided mutagenesis, coupled with point mutations selecting improving amino acid sites suggested by other groups, permitted the identification of a mutant A208N with improved activity for amine product formation. Improvements in conversion were attributed to greater enzyme stability as revealed by X-ray crystallography and nano differential scanning fluorimetry. The mutant IR77-A208N was applied to the preparative scale amination of cyclohexanone at 50 mM concentration, with 1.2 equiv of three larger amines, in isolated yields of up to 93%.

2.
J Chem Inf Model ; 54(8): 2334-46, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25005922

RESUMO

Enzyme design is an important area of ongoing research with a broad range of applications in protein therapeutics, biocatalysis, bioengineering, and other biomedical areas; however, significant challenges exist in the design of enzymes to catalyze specific reactions of interest. Here, we develop a computational protocol using an approach that combines molecular dynamics, docking, and MM-GBSA scoring to predict the catalytic activity of enzyme variants. Our primary focuses are to understand the molecular basis of substrate recognition and binding in an S-stereoselective ω-aminotransferase (ω-AT), which naturally catalyzes the transamination of pyruvate into alanine, and to predict mutations that enhance the catalytic efficiency of the enzyme. The conversion of (R)-ethyl 5-methyl-3-oxooctanoate to (3S,5R)-ethyl 3-amino-5-methyloctanoate in the context of several ω-AT mutants was evaluated using the computational protocol developed in this work. We correctly identify the mutations that yield the greatest improvements in enzyme activity (20-60-fold improvement over wild type) and confirm that the computationally predicted structure of a highly active mutant reproduces key structural aspects of the variant, including side chain conformational changes, as determined by X-ray crystallography. Overall, the protocol developed here yields encouraging results and suggests that computational approaches can aid in the redesign of enzymes with improved catalytic efficiency.


Assuntos
Alanina Transaminase/química , Alanina/química , Caprilatos/química , Simulação de Dinâmica Molecular , Engenharia de Proteínas/métodos , Ácido Pirúvico/química , Alanina Transaminase/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
3.
Protein Eng Des Sel ; 26(1): 25-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23012440

RESUMO

Several protein engineering approaches were combined to optimize the selectivity and activity of Vibrio fluvialis aminotransferase (Vfat) for the synthesis of (3S,5R)-ethyl 3-amino-5-methyloctanoate; a key intermediate in the synthesis of imagabalin, an advanced candidate for the treatment of generalized anxiety disorder. Starting from wild-type Vfat, which had extremely low activity catalyzing the desired reaction, we engineered an improved enzyme with a 60-fold increase in initial reaction velocity for transamination of (R)-ethyl 5-methyl 3-oxooctanoate to (3S,5R)-ethyl 3-amino-5-methyloctanoate. To achieve this, <450 variants were screened, which allowed accurate assessment of enzyme performance using a low-throughput ultra performance liquid chromatography assay. During the course of this work, crystal structures of Vfat wild type and an improved variant (Vfat variant r414) were solved and they are reported here for the first time. This work also provides insight into the critical residues for substrate specificity for the transamination of (R)-ethyl 5-methyl 3-oxooctanoate and structurally related ß-ketoesters.


Assuntos
Aminoácidos/metabolismo , Caprilatos/metabolismo , Engenharia de Proteínas/métodos , Transaminases/genética , Transaminases/metabolismo , Vibrio/enzimologia , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transaminases/química
4.
Bioorg Med Chem Lett ; 21(9): 2631-6, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21269825

RESUMO

The synthesis and structure-activity relationship (SAR) of a novel series of di-substituted imidazoles, derived from modification of DAPT, are described. Subsequent optimization led to identification of a highly potent series of inhibitors that contain a ß-amine in the imidazole side-chain resulting in a robust in vivo reduction of plasma and brain Aß in guinea pigs. The therapeutic index between Aß reductions and changes in B-cell populations were studied for compound 10 h.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Imidazóis/síntese química , Imidazóis/farmacologia , Aminação/efeitos dos fármacos , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Animais , Bioensaio , Diamida/síntese química , Diamida/química , Diamida/farmacologia , Inibidores Enzimáticos/química , Cobaias , Células HeLa , Humanos , Imidazóis/química , Concentração Inibidora 50 , Estrutura Molecular , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 21(9): 2637-40, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21269827

RESUMO

A novel series of tetralin containing amino imidazoles, derived from modification of the corresponding phenyl acetic acid derivatives is described. Replacement of the amide led to identification of a potent series of tetralin-amino imidazoles with robust central efficacy. The reduction of brain Aß in guinea pigs in the absence of changes in B-cells suggested a potential therapeutic index with respect to APP processing compared with biomarkers of notch related toxicity. Optimization of the FTOC to plasma concentrations at the brain Aß EC(50) lead to the identification of compound 14f (PF-3084014) which was selected for clinical development.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Tetra-Hidronaftalenos/síntese química , Tetra-Hidronaftalenos/farmacologia , Valina/análogos & derivados , Animais , Bioensaio , Desenho de Fármacos , Inibidores Enzimáticos/química , Cobaias , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Concentração Inibidora 50 , Estrutura Molecular , Relação Estrutura-Atividade , Tetra-Hidronaftalenos/química , Valina/síntese química , Valina/química , Valina/farmacologia
6.
J Pharmacol Exp Ther ; 319(2): 924-33, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16920992

RESUMO

LY-450139 is a gamma-secretase inhibitor shown to have efficacy in multiple cellular and animal models. Paradoxically, robust elevations of plasma amyloid-beta (Abeta) have been reported in dogs and humans after administration of subefficacious doses. The present study sought to further evaluate Abeta responses to LY-450139 in the guinea pig, a nontransgenic model that has an Abeta sequence identical to that of human. Male guinea pigs were treated with LY-450139 (0.2-60 mg/kg), and brain, cerebrospinal fluid, and plasma Abeta levels were characterized at 1, 3, 6, 9, and 14 h postdose. Low doses significantly elevated plasma Abeta levels at early time points, with return to baseline within hours. Higher doses inhibited Abeta levels in all compartments at early time points, but elevated plasma Abeta levels at later time points. To determine whether this phenomenon occurs under steady-state drug exposure, guinea pigs were implanted with subcutaneous minipumps delivering LY-450139 (0.3-30 mg/kg/day) for 5 days. Plasma Abeta was significantly inhibited at 10-30 mg/kg/day, but significantly elevated at 1 mg/kg/day. To further understand the mechanism of Abeta elevation by LY-450139, H4 cells overexpressing the Swedish mutant of amyloid-precursor protein and a mouse embryonic stem cell-derived neuronal cell line were studied. In both cellular models, elevated levels of secreted Abeta were observed at subefficacious concentrations, whereas dose-responsive inhibition was observed at higher concentrations. These results suggest that LY-450139 modulates the gamma-secretase complex, eliciting Abeta lowering at high concentrations but Abeta elevation at low concentrations.


Assuntos
Alanina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/sangue , Azepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Alanina/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Cobaias , Masculino , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA