Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674116

RESUMO

Due to the widespread use of shellfish ingredients in food products, accurate food labelling is urgently needed for consumers with shellfish allergies. Most crustacean allergen detection systems target the immunorecognition of the allergenic protein tropomyosin. However, this mode of detection may be affected by an origin-dependent protein composition. This study determined if the geographic location of capture, or aquaculture, influenced the allergenic protein profiles of Black Tiger Shrimp (Penaeus monodon), one of the most farmed and consumed shrimp species worldwide. Protein composition was analysed in shrimp from nine different locations in the Asia-Pacific by SDS-PAGE, immunoblotting, and mass spectrometry. Ten of the twelve known shrimp allergens were detected, but with considerable differences between locations. Sarcoplasmic calcium-binding protein, myosin light chain, and tropomyosin were the most abundant allergens in all locations. Hemocyanin-specific antibodies could identify up to six different isoforms, depending on the location of origin. Similarly, tropomyosin abundance varied by up to 13 times between locations. These findings suggest that allergen abundance may be related to shrimp origin and, thus, shrimp origin might directly impact the readout of commercial crustacean allergen detection kits, most of which target tropomyosin, and this should be considered in food safety assessments.


Assuntos
Alérgenos , Inocuidade dos Alimentos , Penaeidae , Tropomiosina , Animais , Alérgenos/análise , Alérgenos/imunologia , Penaeidae/imunologia , Tropomiosina/imunologia , Hipersensibilidade a Frutos do Mar/imunologia , Frutos do Mar/análise , Frutos do Mar/efeitos adversos
2.
Foods ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275682

RESUMO

Shellfish allergy affects ~2.5% of the global population and is a type I immune response resulting from exposure to crustacean and/or molluscan proteins. The Australian Redclaw crayfish (Cherax quadricarinatus) is a freshwater species endemic to and farmed in northern Australia and is becoming an aquaculture species of interest globally. Despite being consumed as food, allergenic proteins from redclaw have not been identified or characterised. In addition, as different body parts are often consumed, it is conceivable that redclaw tissues vary in allergenicity depending on tissue type and function. To better understand food-derived allergenicity, this study characterised allergenic proteins in various redclaw body tissues (the tail, claw, and cephalothorax) and how the stability of allergenic proteins was affected through cooking (raw vs. cooked tissues). The potential of redclaw allergens to cross-react and cause IgE-binding in patients allergic to other shellfish (i.e., shrimp) was also investigated. Raw and cooked extracts were prepared from each body part. SDS-PAGE followed by immunoblotting was performed to determine allergen-specific antibody reactivity to sarcoplasmic calcium-binding protein and hemocyanin, as well as to identify redclaw proteins binding to IgE antibodies from individual and pooled sera of shrimp-allergic patients. Liquid chromatography-mass spectrometry (LC/MS) was utilised to identify proteins and to determine the proportion within extracts. Known crustacean allergens were found in all tissues, with a variation in tissue distribution (e.g., higher levels of hemocyanin in the claw and cephalothorax than in the tail). The proportion of some allergens as a percentage of remaining heat-stable proteins increased in cooked tissues. Previously described heat-stable allergens (i.e., hemocyanin and sarcoplasmic calcium-binding protein) were found to be partially heat-labile. Immunoblotting indicated that shrimp-allergic patients cross-react to redclaw allergens. IgE-binding bands, analysed by LC/MS, identified up to 11 known shellfish allergens. The findings of this study provide fundamental knowledge into the diagnostic and therapeutic field of shellfish allergy.

4.
Allergy ; 78(12): 3221-3234, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650248

RESUMO

BACKGROUND: Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. METHODS: We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. RESULTS: The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%-45%) and tuna (8%-17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. CONCLUSION: We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Animais , Humanos , Tropomiosina , Peixes , Anticorpos , Salmão , Produtos Pesqueiros/efeitos adversos , Parvalbuminas , Colágeno
5.
J Proteomics ; 269: 104724, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36096435

RESUMO

Exploration of important insect proteins - including allergens - and proteomes can be limited by protein extraction buffer selection and the complexity of the proteome. Herein, LC-MS/MS-based proteomics experiments were used to assess the protein extraction efficiencies for a suite of extraction buffers and the effect of ingredient processing on proteome and allergen detection. Discovery proteomics revealed that SDS-based buffer yields the maximum number of protein groups from three types of BSF samples. Bioinformatic analysis revealed that buffer composition and ingredient processing could influence allergen detection. Upon applying multi-level filtering criteria, 33 putative allergens were detected by comparing the detected BSF proteins to sequences from public allergen protein databases. A targeted LC-MRM-MS assay was developed for the pan-allergen tropomyosin and used to assess the influence of buffer composition and ingredient processing using peptide abundance measurements. SIGNIFICANCE: We demonstrated that the selection of protein extraction buffer and the processing method could influence protein yield and cross-reactive allergen detection from processed and un-processed black soldier fly (BSF) samples. In total, 33 putative allergens were detected by comparing the detected BSF proteins to sequences from public allergen protein databases. An LC-MRM-MS assay was developed for tropomyosin, indicating the importance of buffer selection and processing conditions to reduce BSF samples' allergenicity.


Assuntos
Alérgenos , Dípteros , Alérgenos/metabolismo , Animais , Cromatografia Líquida , Dípteros/metabolismo , Proteínas de Insetos/metabolismo , Larva/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Tropomiosina/metabolismo
6.
Pediatr Allergy Immunol ; 33(5): e13781, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35616897

RESUMO

BACKGROUND: Clinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance. METHODS: Proteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients' serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay. RESULTS: Of the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile ß-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for ß-PV and epitopes predicted, explaining frequent IgE-cross-binding of ß-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (ß-PV as Cro p 1 and α-PV as Cro p 2). CONCLUSION: Fish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat.


Assuntos
Jacarés e Crocodilos , Hipersensibilidade Alimentar , Alérgenos , Animais , Criança , Reações Cruzadas , Peixes , Hipersensibilidade Alimentar/diagnóstico , Humanos , Imunoglobulina E , Parvalbuminas
8.
Foods ; 11(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159555

RESUMO

The Pacific oyster is a commercially important mollusc and, in contrast to most other shellfish species, frequently consumed without prior heat treatment. Oysters are rich in many nutrients but can also cause food allergy. Knowledge of their allergens and cross-reactivity remains very limited. These limitations make an optimal diagnosis of oyster allergy difficult, in particular to the Pacific oyster (Crassostrea gigas), the most cultivated and consumed oyster species worldwide. This study aimed to characterise IgE sensitisation profiles of 21 oyster-sensitised patients to raw and heated Pacific oyster extract using immunoblotting and advanced mass spectrometry, and to assess the relevance of recombinant oyster allergen for improved diagnosis. Tropomyosin was identified as the major allergen recognised by IgE from 18 of 21 oyster-sensitised patients and has been registered with the WHO/IUIS as the first oyster allergen (Cra g 1). The IgE-binding capacity of oyster-sensitised patients' IgE to purified natural and recombinant tropomyosin from oyster, prawn, and dust mite was compared using enzyme-linked immunosorbent assay. The degree of IgE binding varied between patients, indicating partial cross-sensitisation and/or co-sensitisation. Amino acid sequence alignment of tropomyosin from these three species revealed five regions that contain predicted IgE-binding epitopes, which are most likely responsible for this cross-reactivity. This study fully biochemically characterises the first and major oyster allergen Cra g 1 and demonstrates that the corresponding recombinant tropomyosin should be implemented in improved component-resolved diagnostics and guide future immunotherapy.

9.
Food Chem ; 348: 129110, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33508605

RESUMO

Insects have been consumed by people for millennia and have recently been proposed as a complementary, sustainable source of protein to feed the world's growing population. Insects and crustaceans both belong to the arthropod family. Crustacean (shellfish) allergies are common and potentially severe; hence, the cross-reactivity of the immune system with insect proteins is a potential health concern. Herein, LC-MS/MS was used to explore the proteome of whole, roasted whole and roasted powdered cricket products. Eight protein extraction protocols were compared using the total number of protein and distinct peptide identifications. Within these data, 20 putative allergens were identified, of which three were arginine kinase (AK) proteoforms. Subsequently, a multiple reaction monitoring MS assay was developed for the AK proteoforms and applied to a subset of extracts. This targeted assay demonstrated that allergen abundance/detectability varies according to the extraction method as well as the food processing method.


Assuntos
Arginina Quinase/isolamento & purificação , Arginina Quinase/metabolismo , Gryllidae/metabolismo , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Proteômica , Alérgenos/imunologia , Animais , Reações Cruzadas , Manipulação de Alimentos , Inocuidade dos Alimentos , Gryllidae/imunologia , Humanos
10.
Allergy ; 76(5): 1443-1453, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32860256

RESUMO

BACKGROUND: Diagnostic tests for fish allergy are hampered by the large number of under-investigated fish species. Four salmon allergens are well-characterized and registered with the WHO/IUIS while no catfish allergens have been described so far. In 2008, freshwater-cultured catfish production surpassed that of salmon, the globally most-cultured marine species. We aimed to identify, quantify, and compare all IgE-binding proteins in salmon and catfish. METHODS: Seventy-seven pediatric patients with clinically confirmed fish allergy underwent skin prick tests to salmon and catfish. The allergen repertoire of raw and heated protein extracts was evaluated by immunoblotting using five allergen-specific antibodies and patients' serum followed by mass spectrometric analyses. RESULTS: Raw and heated extracts from catfish displayed a higher frequency of IgE-binding compared to those from salmon (77% vs 70% and 64% vs 53%, respectively). The major fish allergen parvalbumin demonstrated the highest IgE-binding capacity (10%-49%), followed by triosephosphate isomerase (TPI; 19%-34%) in raw and tropomyosin (6%-32%) in heated extracts. Six previously unidentified fish allergens, including TPI, were registered with the WHO/IUIS. Creatine kinase from salmon and catfish was detected by IgE from 14% and 10% of patients, respectively. Catfish L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and glucose-6-phosphate isomerase showed IgE-binding for 6%-13% of patients. In salmon, these proteins could not be separated successfully. CONCLUSIONS: We detail the allergen repertoire of two highly farmed fish species. IgE-binding to fish tropomyosins and TPIs was demonstrated for the first time in a large patient cohort. Tropomyosins, in addition to parvalbumins, should be considered for urgently needed improved fish allergy diagnostics.


Assuntos
Alérgenos/imunologia , Hipersensibilidade Alimentar , Animais , Peixes-Gato , Criança , Hipersensibilidade Alimentar/diagnóstico , Humanos , Parvalbuminas , Salmão
11.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375120

RESUMO

Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.


Assuntos
Alérgenos/genética , Proteínas de Artrópodes/genética , Hipersensibilidade Alimentar/genética , Perfilação da Expressão Gênica/métodos , Penaeidae/genética , Transcriptoma/genética , Alérgenos/imunologia , Animais , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/imunologia , Reações Cruzadas/imunologia , Evolução Molecular , Hipersensibilidade Alimentar/imunologia , Humanos , Penaeidae/classificação , Penaeidae/imunologia , Filogenia , Alimentos Marinhos/análise , Especificidade da Espécie , Tropomiosina/genética , Tropomiosina/imunologia
12.
Front Immunol ; 10: 2676, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803189

RESUMO

Understanding and predicting an individual's clinical cross-reactivity to related allergens is a key to better management, treatment and progression of novel therapeutics for food allergy. In food allergy, clinical cross-reactivity is observed in patients reacting to unexpected allergen sources containing the same allergenic protein or antibody binding patches (epitopes), often resulting in severe allergic reactions. Shellfish allergy affects up to 2% of the world population and persists for life in most patients. The diagnosis of shellfish allergy is however often challenging due to reported clinical cross-reactivity to other invertebrates including mites and cockroaches. Prediction of cross-reactivity can be achieved utilizing an in-depth analysis of a few selected IgE-antibody binding epitopes. We combined available experimentally proven IgE-binding epitopes with informatics-based cross-reactivity prediction modeling to assist in the identification of clinical cross-reactive biomarkers on shellfish allergens. This knowledge can be translated into prevention and treatment of allergic diseases. To overcome the problem of predicting IgE cross-reactivity of shellfish allergens we developed an epitope conservation model using IgE binding epitopes available in the Immune Epitope Database and Analysis Resource (http://www.iedb.org/). We applied this method to a set of four different shrimp allergens, and successfully identified several non-cross-reactive as well as cross-reactive epitopes, which have been experimentally established to cross-react. Based on these findings we suggest that this method can be used for advanced component-resolved-diagnosis to identify patients sensitized to a specific shellfish group and distinguish from patients with extensive cross-reactivity to ingested and inhaled allergens from invertebrate sources.


Assuntos
Alérgenos/imunologia , Proteínas de Artrópodes/imunologia , Epitopos de Linfócito B/imunologia , Hipersensibilidade Alimentar/diagnóstico , Invertebrados , Frutos do Mar , Alérgenos/genética , Sequência de Aminoácidos , Animais , Arginina Quinase/genética , Arginina Quinase/imunologia , Proteínas de Artrópodes/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Reações Cruzadas , Epitopos de Linfócito B/genética , Hipersensibilidade Alimentar/imunologia , Humanos , Imunoglobulina E/imunologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/imunologia , Tropomiosina/genética , Tropomiosina/imunologia
13.
Mol Immunol ; 112: 330-337, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247376

RESUMO

Shrimp is one of the predominant causes of food allergy among adults, often presenting with severe reactions. Current in vitro diagnostics are based on quantification of patient specific-IgE (sIgE) to shrimp extract. Tropomyosin is the known major shrimp allergen, but IgE sensitisation to other allergens is poorly characterised. In this study, the binding of IgE to various shrimp allergens, additional to tropomyosin, was investigated using sera from 21 subjects who had clinical reactions to one or more shellfish species. Total shrimp-sIgE was quantified using ImmunoCAP, while allergen-sIgEs were quantified using immunoblotting and mass spectrometry, and immuno-PCR to recombinant shrimp tropomyosin. Sixty-two percent of subjects (13/21) were positive to shrimp by ImmunoCAP. IgE from 43% of subjects (9/21) bound tropomyosin, while an additional 29% of subjects (6/21) demonstrated IgE-binding solely to other shrimp allergens, including sarcoplasmic calcium-binding protein, arginine kinase and hemocyanin. Furthermore, IgE sensitisation to other shrimp allergens was demonstrated in 50% of subjects (4/8) who were ImmunoCAP negative. The lack of standardised shrimp allergens and inadequacy of current extracts for shrimp allergy diagnosis is highlighted by this study. Comprehensive knowledge of less studied allergens and their inclusion in component-resolved diagnostics will improve diagnostic accuracy, benefitting the wider population suffering from shellfish allergy.


Assuntos
Alérgenos/imunologia , Artemia/imunologia , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/imunologia , Adulto , Animais , Arginina Quinase/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Feminino , Hemocianinas/imunologia , Humanos , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Alimentos Marinhos , Tropomiosina/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA