Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Epilepsy Behav ; 157: 109876, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851123

RESUMO

OBJECTIVE: Over recent years, there has been a growing interest in exploring the utility of seizure risk forecasting, particularly how it could improve quality of life for people living with epilepsy. This study reports on user experiences and perspectives of a seizure risk forecaster app, as well as the potential impact on mood and adjustment to epilepsy. METHODS: Active app users were asked to complete a survey (baseline and 3-month follow-up) to assess perspectives on the forecast feature as well as mood and adjustment. Post-hoc, nine neutral forecast users (neither agreed nor disagreed it was useful) completed semi-structured interviews, to gain further insight into their perspectives of epilepsy management and seizure forecasting. Non-parametric statistical tests and inductive thematic analyses were used to analyse the quantitative and qualitative data, respectively. RESULTS: Surveys were completed by 111 users. Responders consisted of "app users" (n = 58), and "app and forecast users" (n = 53). Of the "app and forecast users", 40 % believed the forecast was accurate enough to be useful in monitoring for seizure risk, and 60 % adopted it for purposes like scheduling activities and helping mental state. Feeling more in control was the most common response to both high and low risk forecasted states. In-depth interviews revealed five broad themes, of which 'frustrations with lack of direction' (regarding their current epilepsy management approach), 'benefits of increased self-knowledge' and 'current and anticipated usefulness of forecasting' were the most common. SIGNIFICANCE: Preliminary results suggest that seizure risk forecasting can be a useful tool for people with epilepsy to make lifestyle changes, such as scheduling daily events, and experience greater feelings of control. These improvements may be attributed, at least partly, to the improvements in self-knowledge experienced through forecast use.

2.
Epilepsia ; 65(4): 1017-1028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366862

RESUMO

OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.


Assuntos
Epilepsia Generalizada , Epilepsia , Morte Súbita Inesperada na Epilepsia , Dispositivos Eletrônicos Vestíveis , Humanos , Morte Súbita Inesperada na Epilepsia/prevenção & controle , Convulsões/diagnóstico , Convulsões/terapia , Epilepsia/diagnóstico , Eletroencefalografia/métodos
3.
Brain Commun ; 5(5): fcad205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693811

RESUMO

Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterized the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states. We then compared seizure network state occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. In most patients, the occurrence or duration of at least one seizure network state was associated with the time since implantation. Some patients had one or more seizure network states that were associated with phases of circadian and/or multidien spike rate cycles. A given seizure network state's occurrence and duration were usually not associated with the same timescale. Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a seizure network state's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures and similar principles likely apply to other neurological conditions.

4.
EBioMedicine ; 93: 104656, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331164

RESUMO

BACKGROUND: Seizure risk forecasting could reduce injuries and even deaths in people with epilepsy. There is great interest in using non-invasive wearable devices to generate forecasts of seizure risk. Forecasts based on cycles of epileptic activity, seizure times or heart rate have provided promising forecasting results. This study validates a forecasting method using multimodal cycles recorded from wearable devices. METHOD: Seizure and heart rate cycles were extracted from 13 participants. The mean period of heart rate data from a smartwatch was 562 days, with a mean of 125 self-reported seizures from a smartphone app. The relationship between seizure onset time and phases of seizure and heart rate cycles was investigated. An additive regression model was used to project heart rate cycles. The results of forecasts using seizure cycles, heart rate cycles, and a combination of both were compared. Forecasting performance was evaluated in 6 of 13 participants in a prospective setting, using long-term data collected after algorithms were developed. FINDINGS: The results showed that the best forecasts achieved a mean area under the receiver-operating characteristic curve (AUC) of 0.73 for 9/13 participants showing performance above chance during retrospective validation. Subject-specific forecasts evaluated with prospective data showed a mean AUC of 0.77 with 4/6 participants showing performance above chance. INTERPRETATION: The results of this study demonstrate that cycles detected from multimodal data can be combined within a single, scalable seizure risk forecasting algorithm to provide robust performance. The presented forecasting method enabled seizure risk to be estimated for an arbitrary future period and could be generalised across a range of data types. In contrast to earlier work, the current study evaluated forecasts prospectively, in subjects blinded to their seizure risk outputs, representing a critical step towards clinical applications. FUNDING: This study was funded by an Australian Government National Health & Medical Research Council and BioMedTech Horizons grant. The study also received support from the Epilepsy Foundation of America's 'My Seizure Gauge' grant.


Assuntos
Epilepsia , Convulsões , Humanos , Projetos Piloto , Estudos Prospectivos , Autorrelato , Estudos Retrospectivos , Frequência Cardíaca , Austrália , Convulsões/epidemiologia , Epilepsia/epidemiologia , Previsões
5.
IEEE Trans Nanobioscience ; 22(4): 818-827, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37163411

RESUMO

Epilepsy patients often experience acute repetitive seizures, known as seizure clusters, which can progress to prolonged seizures or status epilepticus if left untreated. Predicting the onset of seizure clusters is crucial to enable patients to receive preventative treatments. Additionally, studying the patterns of seizure clusters can help predict the seizure type (isolated or cluster) after observing a just occurred seizure. This paper presents machine learning models that use bivariate intracranial EEG (iEEG) features to predict seizure clustering. Specifically, we utilized relative entropy (REN) as a bivariate feature to capture potential differences in brain region interactions underlying isolated and cluster seizures. We analyzed a large ambulatory iEEG dataset collected from 15 patients and spanned up to 2 years of recordings for each patient, consisting of 3341 cluster seizures (from 427 clusters) and 369 isolated seizures. The dataset's substantial number of seizures per patient enabled individualized analyses and predictions. We observed that REN was significantly different between isolated and cluster seizures in majority of the patients. Machine learning models based on REN: 1) predicted whether a seizure will occur soon after a given seizure with up to 69.5% Area under the ROC Curve (AUC), 2) predicted if a seizure is the first one in a cluster with up to 55.3% AUC, outperforming baseline techniques. Overall, our findings could be beneficial in addressing the clinical burden associated with seizure clusters, enabling patients to receive timely treatments and improving their quality of life.


Assuntos
Eletrocorticografia , Epilepsia , Humanos , Eletrocorticografia/métodos , Qualidade de Vida , Convulsões/diagnóstico , Eletroencefalografia/métodos , Aprendizado de Máquina
6.
Brain ; 146(7): 2803-2813, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511881

RESUMO

Sleep duration, sleep deprivation and the sleep-wake cycle are thought to play an important role in the generation of epileptic activity and may also influence seizure risk. Hence, people diagnosed with epilepsy are commonly asked to maintain consistent sleep routines. However, emerging evidence paints a more nuanced picture of the relationship between seizures and sleep, with bidirectional effects between changes in sleep and seizure risk in addition to modulation by sleep stages and transitions between stages. We conducted a longitudinal study investigating sleep parameters and self-reported seizure occurrence in an ambulatory at-home setting using mobile and wearable monitoring. Sixty subjects wore a Fitbit smartwatch for at least 28 days while reporting their seizure activity in a mobile app. Multiple sleep features were investigated, including duration, oversleep and undersleep, and sleep onset and offset times. Sleep features in participants with epilepsy were compared to a large (n = 37 921) representative population of Fitbit users, each with 28 days of data. For participants with at least 10 seizure days (n = 34), sleep features were analysed for significant changes prior to seizure days. A total of 4956 reported seizures (mean = 83, standard deviation = 130) and 30 485 recorded sleep nights (mean = 508, standard deviation = 445) were included in the study. There was a trend for participants with epilepsy to sleep longer than the general population, although this difference was not significant. Just 5 of 34 participants showed a significant difference in sleep duration the night before seizure days compared to seizure-free days. However, 14 of 34 subjects showed significant differences between their sleep onset (bed) and/or offset (wake) times before seizure occurrence. In contrast to previous studies, the current study found undersleeping was associated with a marginal 2% decrease in seizure risk in the following 48 h (P < 0.01). Nocturnal seizures were associated with both significantly longer sleep durations and increased risk of a seizure occurring in the following 48 h. Overall, the presented results demonstrated that day-to-day changes in sleep duration had a minimal effect on reported seizures, while patient-specific changes in bed and wake times were more important for identifying seizure risk the following day. Nocturnal seizures were the only factor that significantly increased the risk of seizures in the following 48 h on a group level. Wearables can be used to identify these sleep-seizure relationships and guide clinical recommendations or improve seizure forecasting algorithms.


Assuntos
Epilepsia , Duração do Sono , Humanos , Estudos Longitudinais , Eletroencefalografia , Sono , Epilepsia/complicações , Epilepsia/epidemiologia , Convulsões/complicações
7.
Neuroimage ; 263: 119592, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031185

RESUMO

Neural processes are complex and difficult to image. This paper presents a new space-time resolved brain imaging framework, called Neurophysiological Process Imaging (NPI), that identifies neurophysiological processes within cerebral cortex at the macroscopic scale. By fitting uncoupled neural mass models to each electromagnetic source time-series using a novel nonlinear inference method, population averaged membrane potentials and synaptic connection strengths are efficiently and accurately inferred and imaged across the whole cerebral cortex at a resolution afforded by source imaging. The efficiency of the framework enables return of the augmented source imaging results overnight using high performance computing. This suggests it can be used as a practical and novel imaging tool. To demonstrate the framework, it has been applied to resting-state magnetoencephalographic source estimates. The results suggest that endogenous inputs to cingulate, occipital, and inferior frontal cortex are essential modulators of resting-state alpha power. Moreover, endogenous input and inhibitory and excitatory neural populations play varied roles in mediating alpha power in different resting-state sub-networks. The framework can be applied to arbitrary neural mass models and has broad applicability to image neural processes of different brain states.


Assuntos
Ritmo alfa , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Magnetoencefalografia , Mapeamento Encefálico
8.
Brain Commun ; 4(4): fcac173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855481

RESUMO

A seizure's electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical 'pathway', and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were 'truncated' versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations ('elasticity'), or had similar durations, but followed different pathways ('semblance'). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.

9.
Epilepsia ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604546

RESUMO

To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.

10.
Epilepsia ; 63(7): 1682-1692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395096

RESUMO

OBJECTIVE: Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS: This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista data set, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary data set, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 µm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS: A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), whereas no significant associations were found for the other four air pollutants in the whole study population. Female participants had a significantly increased risk of seizures when exposed to elevated CO and NO2 , with RRs of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. In addition, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE: Daily exposure to elevated CO concentrations may be associated with an increased risk of epileptic seizures, especially for subclinical seizures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Epilepsias Parciais , Epilepsia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Austrália/epidemiologia , Epilepsia/induzido quimicamente , Feminino , Humanos , Dióxido de Nitrogênio/análise , Convulsões/induzido quimicamente , Convulsões/etiologia
11.
EBioMedicine ; 72: 103619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34649079

RESUMO

BACKGROUND: Circadian and multiday rhythms are found across many biological systems, including cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic brain activity and seizure occurrence have been found to follow circadian, weekly, and monthly rhythms. Understanding the relationship between these cycles of brain excitability and other physiological systems can provide new insight into the causes of multiday cycles. The brain-heart link has previously been considered in epilepsy research, with potential implications for seizure forecasting, therapy, and mortality (i.e., sudden unexpected death in epilepsy). METHODS: We report the results from a non-interventional, observational cohort study, Tracking Seizure Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. Relationships between heart rate cycles and seizure occurrence were measured from the distributions of seizure likelihood with respect to underlying cycle phase. FINDINGS: Heart rate cycles were found in all 46 participants (people with epilepsy and healthy controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate cycles. INTERPRETATION: Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated with seizure likelihood. The relationship between heart rate and seizures is relevant for epilepsy therapy, including seizure forecasting, and may also have implications for cardiovascular disease. More broadly, understanding the link between multiday cycles in the heart and brain can shed new light on endogenous physiological rhythms in humans. FUNDING: This research received funding from the Australian Government National Health and Medical Research Council (investigator grant 1178220), the Australian Government BioMedTech Horizons program, and the Epilepsy Foundation of America's 'My Seizure Gauge' grant.


Assuntos
Frequência Cardíaca/fisiologia , Convulsões/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiopatologia , Relógios Circadianos/fisiologia , Estudos de Coortes , Morte Súbita/etiologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Front Neurol ; 12: 713794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497578

RESUMO

Accurate identification of seizure activity, both clinical and subclinical, has important implications in the management of epilepsy. Accurate recognition of seizure activity is essential for diagnostic, management and forecasting purposes, but patient-reported seizures have been shown to be unreliable. Earlier work has revealed accurate capture of electrographic seizures and forecasting is possible with an implantable intracranial device, but less invasive electroencephalography (EEG) recording systems would be optimal. Here, we present preliminary results of seizure detection and forecasting with a minimally invasive sub-scalp device that continuously records EEG. Five participants with refractory epilepsy who experience at least two clinically identifiable seizures monthly have been implanted with sub-scalp devices (Minder®), providing two channels of data from both hemispheres of the brain. Data is continuously captured via a behind-the-ear system, which also powers the device, and transferred wirelessly to a mobile phone, from where it is accessible remotely via cloud storage. EEG recordings from the sub-scalp device were compared to data recorded from a conventional system during a 1-week ambulatory video-EEG monitoring session. Suspect epileptiform activity (EA) was detected using machine learning algorithms and reviewed by trained neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing cycles in EA and previous seizure times. The procedures and devices were well-tolerated and no significant complications have been reported. Seizures were accurately identified on the sub-scalp system, as visually confirmed by periods of concurrent conventional scalp EEG recordings. The data acquired also allowed seizure forecasting to be successfully undertaken. The area under the receiver operating characteristic curve (AUC score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art forecasting work using intracranial EEG.

13.
Front Neurol ; 12: 704060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335457

RESUMO

The unpredictability of epileptic seizures exposes people with epilepsy to potential physical harm, restricts day-to-day activities, and impacts mental well-being. Accurate seizure forecasters would reduce the uncertainty associated with seizures but need to be feasible and accessible in the long-term. Wearable devices are perfect candidates to develop non-invasive, accessible forecasts but are yet to be investigated in long-term studies. We hypothesized that machine learning models could utilize heart rate as a biomarker for well-established cycles of seizures and epileptic activity, in addition to other wearable signals, to forecast high and low risk seizure periods. This feasibility study tracked participants' (n = 11) heart rates, sleep, and step counts using wearable smartwatches and seizure occurrence using smartphone seizure diaries for at least 6 months (mean = 14.6 months, SD = 3.8 months). Eligible participants had a diagnosis of refractory epilepsy and reported at least 20 seizures (mean = 135, SD = 123) during the recording period. An ensembled machine learning and neural network model estimated seizure risk either daily or hourly, with retraining occurring on a weekly basis as additional data was collected. Performance was evaluated retrospectively against a rate-matched random forecast using the area under the receiver operating curve. A pseudo-prospective evaluation was also conducted on a held-out dataset. Of the 11 participants, seizures were predicted above chance in all (100%) participants using an hourly forecast and in ten (91%) participants using a daily forecast. The average time spent in high risk (prediction time) before a seizure occurred was 37 min in the hourly forecast and 3 days in the daily forecast. Cyclic features added the most predictive value to the forecasts, particularly circadian and multiday heart rate cycles. Wearable devices can be used to produce patient-specific seizure forecasts, particularly when biomarkers of seizure and epileptic activity cycles are utilized.

15.
Front Neurol ; 12: 690404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326807

RESUMO

It is a major challenge in clinical epilepsy to diagnose and treat a disease characterized by infrequent seizures based on patient or caregiver reports and limited duration clinical testing. The poor reliability of self-reported seizure diaries for many people with epilepsy is well-established, but these records remain necessary in clinical care and therapeutic studies. A number of wearable devices have emerged, which may be capable of detecting seizures, recording seizure data, and alerting caregivers. Developments in non-invasive wearable sensors to measure accelerometry, photoplethysmography (PPG), electrodermal activity (EDA), electromyography (EMG), and other signals outside of the traditional clinical environment may be able to identify seizure-related changes. Non-invasive scalp electroencephalography (EEG) and minimally invasive subscalp EEG may allow direct measurement of seizure activity. However, significant network and computational infrastructure is needed for continuous, secure transmission of data. The large volume of data acquired by these devices necessitates computer-assisted review and detection to reduce the burden on human reviewers. Furthermore, user acceptability of such devices must be a paramount consideration to ensure adherence with long-term device use. Such devices can identify tonic-clonic seizures, but identification of other seizure semiologies with non-EEG wearables is an ongoing challenge. Identification of electrographic seizures with subscalp EEG systems has recently been demonstrated over long (>6 month) durations, and this shows promise for accurate, objective seizure records. While the ability to detect and forecast seizures from ambulatory intracranial EEG is established, invasive devices may not be acceptable for many individuals with epilepsy. Recent studies show promising results for probabilistic forecasts of seizure risk from long-term wearable devices and electronic diaries of self-reported seizures. There may also be predictive value in individuals' symptoms, mood, and cognitive performance. However, seizure forecasting requires perpetual use of a device for monitoring, increasing the importance of the system's acceptability to users. Furthermore, long-term studies with concurrent EEG confirmation are lacking currently. This review describes the current evidence and challenges in the use of minimally and non-invasive devices for long-term epilepsy monitoring, the essential components in remote monitoring systems, and explores the feasibility to detect and forecast impending seizures via long-term use of these systems.

16.
Nat Rev Neurol ; 17(5): 267-284, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723459

RESUMO

Epilepsy is among the most dynamic disorders in neurology. A canonical view holds that seizures, the characteristic sign of epilepsy, occur at random, but, for centuries, humans have looked for patterns of temporal organization in seizure occurrence. Observations that seizures are cyclical date back to antiquity, but recent technological advances have, for the first time, enabled cycles of seizure occurrence to be quantitatively characterized with direct brain recordings. Chronic recordings of brain activity in humans and in animals have yielded converging evidence for the existence of cycles of epileptic brain activity that operate over diverse timescales: daily (circadian), multi-day (multidien) and yearly (circannual). Here, we review this evidence, synthesizing data from historical observational studies, modern implanted devices, electronic seizure diaries and laboratory-based animal neurophysiology. We discuss advances in our understanding of the mechanistic underpinnings of these cycles and highlight the knowledge gaps that remain. The potential clinical applications of a knowledge of cycles in epilepsy, including seizure forecasting and chronotherapy, are discussed in the context of the emerging concept of seizure risk. In essence, this Review addresses the broad question of why seizures occur when they occur.


Assuntos
Encéfalo/fisiopatologia , Fenômenos Cronobiológicos/fisiologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Animais , Ritmo Circadiano/fisiologia , Eletroencefalografia/tendências , Humanos , Periodicidade , Fases do Sono/fisiologia
17.
Epilepsia ; 62(2): 416-425, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33507573

RESUMO

OBJECTIVE: Video-electroencephalography (vEEG) is an important component of epilepsy diagnosis and management. Nevertheless, inpatient vEEG monitoring fails to capture seizures in up to one third of patients. We hypothesized that personalized seizure forecasts could be used to optimize the timing of vEEG. METHODS: We used a database of ambulatory vEEG studies to select a cohort with linked electronic seizure diaries of more than 20 reported seizures over at least 8 weeks. The total cohort included 48 participants. Diary seizure times were used to detect individuals' multiday seizure cycles and estimate times of high seizure risk. We compared whether estimated seizure risk was significantly different between conclusive and inconclusive vEEGs, and between vEEG with and without recorded epileptic activity. vEEGs were conducted prior to self-reported seizures; hence, the study aimed to provide a retrospective proof of concept that cycles of seizure risk were correlated with vEEG outcomes. RESULTS: Estimated seizure risk was significantly higher for conclusive vEEGs and vEEGs with epileptic activity. Across all cycle strengths, the average time in high risk during vEEG was 29.1% compared with 14% for the conclusive/inconclusive groups and 32% compared to 18% for the epileptic activity/no epileptic activity groups. On average, 62.5% of the cohort showed increased time in high risk during their previous vEEG when epileptic activity was recorded (compared to 28% of the cohort where epileptic activity was not recorded). For conclusive vEEGs, 50% of the cohort had increased time in high risk, compared to 21.5% for inconclusive vEEGs. SIGNIFICANCE: Although retrospective, this study provides a proof of principle that scheduling monitoring times based on personalized seizure risk forecasts can improve the yield of vEEG. Forecasts can be developed at low cost from mobile seizure diaries. A simple scheduling tool to improve diagnostic outcomes may reduce cost and risks associated with delayed or missed diagnosis in epilepsy.


Assuntos
Eletroencefalografia , Epilepsia/fisiopatologia , Convulsões/fisiopatologia , Autorrelato , Adolescente , Adulto , Idoso , Criança , Epilepsia/diagnóstico , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Estudos Retrospectivos , Convulsões/diagnóstico , Gravação em Vídeo , Adulto Jovem
18.
Neurology ; 96(7): e1070-e1081, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33361261

RESUMO

OBJECTIVE: To determine the utility of high-frequency activity (HFA) and epileptiform spikes as biomarkers for epilepsy, we examined the variability in their rates and locations using long-term ambulatory intracranial EEG (iEEG) recordings. METHODS: This study used continuous iEEG recordings obtained over an average of 1.4 years from 15 patients with drug-resistant focal epilepsy. HFA was defined as 80- to 170-Hz events with amplitudes clearly larger than the background, which was automatically detected with a custom algorithm. The automatically detected HFA was compared with visually annotated high-frequency oscillations (HFOs). The variations of HFA rates were compared with spikes and seizures on patient-specific and electrode-specific bases. RESULTS: HFA included manually annotated HFOs and high-amplitude events occurring in the 80- to 170-Hz range without observable oscillatory behavior. HFA and spike rates had high amounts of intrapatient and interpatient variability. Rates of HFA and spikes had large variability after electrode implantation in most of the patients. Locations of HFA and spikes varied up to weeks in more than one-third of the patients. Both HFA and spike rates showed strong circadian rhythms in all patients, and some also showed multiday cycles. Furthermore, the circadian patterns of HFA and spike rates had patient-specific correlations with seizures, which tended to vary across electrodes. CONCLUSION: Analysis of HFA and epileptiform spikes should consider postimplantation variability. HFA and epileptiform spikes, like seizures, show circadian rhythms. However, the circadian profiles can vary spatially within patients, and their correlations to seizures are patient-specific.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia , Convulsões/fisiopatologia , Adulto , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Epilepsy Behav ; 121(Pt B): 106556, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31676240

RESUMO

Epilepsy diagnosis can be costly, time-consuming, and not uncommonly inaccurate. The reference standard diagnostic monitoring is continuous video-electroencephalography (EEG) monitoring, ideally capturing all events or concordant interictal discharges. Automating EEG data review would save time and resources, thus enabling more people to receive reference standard monitoring and also potentially heralding a more quantitative approach to therapeutic outcomes. There is substantial research into the automated detection of seizures and epileptic activity from EEG. However, automated detection software is not widely used in the clinic, and despite numerous published algorithms, few methods have regulatory approval for detecting epileptic activity from EEG. This study reports on a deep learning algorithm for computer-assisted EEG review. Deep convolutional neural networks were trained to detect epileptic discharges using a preexisting dataset of over 6000 labelled events in a cohort of 103 patients with idiopathic generalized epilepsy (IGE). Patients underwent 24-hour ambulatory outpatient EEG, and all data were curated and confirmed independently by two epilepsy specialists (Seneviratne et al., 2016). The resulting automated detection algorithm was then used to review diagnostic scalp EEG for seven patients (four with IGE and three with events mimicking seizures) to validate performance in a clinical setting. The automated detection algorithm showed state-of-the-art performance for detecting epileptic activity from clinical EEG, with mean sensitivity of >95% and corresponding mean false positive rate of 1 detection per minute. Importantly, diagnostic case studies showed that the automated detection algorithm reduced human review time by 80%-99%, without compromising event detection or diagnostic accuracy. The presented results demonstrate that computer-assisted review can increase the speed and accuracy of EEG assessment and has the potential to greatly improve therapeutic outcomes. This article is part of the Special Issue "NEWroscience 2018".


Assuntos
Epilepsia Generalizada , Epilepsia , Algoritmos , Computadores , Eletroencefalografia , Epilepsia Generalizada/diagnóstico , Humanos , Processamento de Sinais Assistido por Computador
20.
Epilepsia ; 62 Suppl 1: S2-S14, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32712968

RESUMO

Epilepsy is a unique neurologic condition characterized by recurrent seizures, where causes, underlying biomarkers, triggers, and patterns differ across individuals. The unpredictability of seizures can heighten fear and anxiety in people with epilepsy, making it difficult to take part in day-to-day activities. Epilepsy researchers have prioritized developing seizure prediction algorithms to combat episodic seizures for decades, but the utility and effectiveness of prediction algorithms has not been investigated thoroughly in clinical settings. In contrast, seizure forecasts, which theoretically provide the probability of a seizure at any time (as opposed to predicting the next seizure occurrence), may be more feasible. Many advances have been made over the past decade in the field of seizure forecasting, including improvements in algorithms as a result of machine learning and exploration of non-EEG-based measures of seizure susceptibility, such as physiological biomarkers, behavioral changes, environmental drivers, and cyclic seizure patterns. For example, recent work investigating periodicities in individual seizure patterns has determined that more than 90% of people have circadian rhythms in their seizures, and many also experience multiday, weekly, or longer cycles. Other potential indicators of seizure susceptibility include stress levels, heart rate, and sleep quality, all of which have the potential to be captured noninvasively over long time scales. There are many possible applications of a seizure-forecasting device, including improving quality of life for people with epilepsy, guiding treatment plans and medication titration, optimizing presurgical monitoring, and focusing scientific research. To realize this potential, it is vital to better understand the user requirements of a seizure-forecasting device, continue to advance forecasting algorithms, and design clear guidelines for prospective clinical trials of seizure forecasting.


Assuntos
Ritmo Circadiano/fisiologia , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Eletroencefalografia/tendências , Previsões , Humanos , Aprendizado de Máquina/tendências , Qualidade de Vida/psicologia , Convulsões/psicologia , Dispositivos Eletrônicos Vestíveis/psicologia , Dispositivos Eletrônicos Vestíveis/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA