Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001881

RESUMO

Biogenic amines dopamine (DA) and serotonin (5-HT) are among the most significant monoaminergic neurotransmitters in the central nervous system (CNS). Separately, the physiological roles of DA and 5-HT have been studied in detail, and progress has been made in understanding their roles in normal and various pathological conditions (Parkinson's disease, schizophrenia, addiction, depression, etc.). In this article we showed that knockout of the gene encoding DAT leads not only to a profound dysregulation of dopamine neurotransmission in the striatum but also in the midbrain, prefrontal cortex, hippocampus, medulla oblongata and spinal cord. Furthermore, significant changes were observed in the production of mRNA of enzymes of monoamine metabolism, as well as to a notable alteration in the tissue level of serotonin, most clearly manifested in the cerebellum and the spinal cord. The observed region-specific changes in the tissue levels of serotonin and in the expression of dopamine and serotonergic metabolism enzymes in rats with an excess of dopamine can indicate important consequences for the pharmacotherapy of drugs that modulate the dopaminergic system. The drugs that affect the dopaminergic system could potently affect the serotonergic system, and this fact is important to consider when predicting their possible therapeutic or side effects.

2.
Antioxidants (Basel) ; 12(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759957

RESUMO

In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.

3.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762647

RESUMO

Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model. Using the elevated plus maze test, we observed that cheese intake resulted in a shift from anxiety-like behavior to depressive behavior, evident in increased freezing acts. However, no significant changes in the anxiety index value were observed. Interestingly, supplementation with cheese and resveratrol only led to the elimination of freezing behavior in half of the PTSD rats. We further segregated the rats into two groups based on freezing behavior: Freezing+ and Freezing0 phenotypes. Resveratrol ameliorated the abnormalities in Monoamine Oxidize -A and Brain-Derived Neurotrophic Factor gene expression in the hippocampus, but only in the Freezing0 rats. Moreover, a negative correlation was found between the number of freezing acts and the levels of Monoamine Oxidize-A and Brain-Derived Neurotrophic Factor mRNAs in the hippocampus. The study results show promise for resveratrol supplementation in PTSD treatment. Further research is warranted to better understand the underlying mechanisms and optimize the potential benefits of resveratrol supplementation for PTSD.


Assuntos
Queijo , Transtornos de Estresse Pós-Traumáticos , Animais , Ratos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Aminas , Suplementos Nutricionais
4.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629192

RESUMO

PTSD is associated with disturbed hepatic morphology and metabolism. Neuronal mitochondrial dysfunction is considered a subcellular determinant of PTSD, but a link between hepatic mitochondrial dysfunction and hepatic damage in PTSD has not been demonstrated. Thus, the effects of experimental PTSD on the livers of high anxiety (HA) and low anxiety (LA) rats were compared, and mitochondrial determinants underlying the difference in their hepatic damage were investigated. Rats were exposed to predator stress for 10 days. Then, 14 days post-stress, the rats were evaluated with an elevated plus maze and assigned to HA and LA groups according to their anxiety index. Experimental PTSD caused dystrophic changes in hepatocytes of HA rats and hepatocellular damage evident by increased plasma ALT and AST activities. Mitochondrial dysfunction was evident as a predominance of small-size mitochondria in HA rats, which was positively correlated with anxiety index, activities of plasma transaminases, hepatic lipids, and negatively correlated with hepatic glycogen. In contrast, LA rats had a predominance of medium-sized mitochondria. Thus, we show links between mitochondrial dysfunction, hepatic damage, and heightened anxiety in PTSD rats. These results will provide a foundation for future research on the role of hepatic dysfunction in PTSD pathogenesis.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Ratos , Transtornos de Ansiedade , Ansiedade/etiologia , Fígado , Mitocôndrias
5.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298287

RESUMO

Glucocorticoids are metabolized by the CYP3A isoform of cytochrome P450 and by 11-ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD-1). Experimental data suggest that post-traumatic stress disorder (PTSD) is associated with an increase in hepatic 11ß-HSD-1 activity and a concomitant decrease in hepatic CYP3A activity. Trans-resveratrol, a natural polyphenol, has been extensively studied for its antipsychiatric properties. Recently, protective effects of trans-resveratrol were found in relation to PTSD. Treatment of PTSD rats with trans-resveratrol allowed the rats to be divided into two phenotypes. The first phenotype is treatment-sensitive rats (TSR), and the second phenotype is treatment-resistant rats (TRRs). In TSR rats, trans-resveratrol ameliorated anxiety-like behavior and reversed plasma corticosterone concentration abnormalities. In contrast, in TRR rats, trans-resveratrol aggravated anxiety-like behavior and decreased plasma corticosterone concentration. In TSR rats, hepatic 11ß-HSD-1 activity was suppressed, with a concomitant increase in CYP3A activity. In TRR rats, the activities of both enzymes were suppressed. Thus, the resistance of PTSD rats to trans-resveratrol treatment is associated with abnormalities in hepatic metabolism of glucocorticoids. The free energy of binding of resveratrol, cortisol, and corticosterone to the human CYP3A protein was determined using the molecular mechanics Poisson-Boltzmann surface area approach, indicating that resveratrol could affect CYP3A activity.


Assuntos
Glucocorticoides , Transtornos de Estresse Pós-Traumáticos , Ratos , Humanos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Corticosterona , Resveratrol/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Citocromo P-450 CYP3A , 11-beta-Hidroxiesteroide Desidrogenases , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1
6.
Biochim Biophys Acta Gen Subj ; 1867(5): 130345, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889447

RESUMO

Calpain and calpastatin are the key components of the calcium-dependent proteolytic system. Calpains are regulatory, calcium-dependent, cytoplasmic proteinases, and calpastatin is the endogenous inhibitor of calpains. Due to the correlation between changes in the activity of the calpain-calpastatin system in the brain and central nervous system (CNS) pathology states, this proteolytic system is a prime focus of research on CNS pathological processes, generally characterized by calpain activity upregulation. The present review aims to generalize existing data on cerebral calpain distribution and function through mammalian ontogenesis. Special attention is given to the most recent studies on the topic as more information on calpain-calpastatin system involvement in normal CNS development and functioning has become available. We also discuss data on calpain and calpastatin activity and production in different brain regions during ontogenesis as comparative analysis of these results in association with ontogeny processes can reveal brain regions and developmental stages with pronounced function of the calpain system.


Assuntos
Cálcio , Calpaína , Animais , Calpaína/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Encéfalo/metabolismo , Peptídeo Hidrolases , Mamíferos/metabolismo
7.
Heliyon ; 9(2): e13446, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825166

RESUMO

Medium-chain triglycerides (MCT) possess neuroprotective properties. However, the long-term metabolic consequences of supplementing a regular diet with cognition-enhancing doses of MCT are largely unknown. We studied the effects of chronic (28 days) supplementation of regular diet with different doses of MCT oil (1, 3, or 6 g/kg/day) or water (control) on working memory (Y-maze), behavior in the Open Field, spatial learning (Morris water maze), and weight of internal organs in male Wistar 2.5-m.o. Rats. In a separate experiment, we evaluated acute (single gavage) and chronic (28 days) effects of MCT or lard supplementation (3 g/kg) on blood biochemical parameters. MCT-1 and MCT-3 doses improved working memory in YM. In MWM, MCT-6 treatment improved spatial memory. Chronic MCT-1 or MCT-3 treatment did not affect internal organ weight, while MCT-6 dose increased liver weight and the brown/white adipose tissue ratio. Acutely, MCT administration elevated blood ß-hydroxybutyrate and malondialdehyde levels. Chronic MCT administration (3 g/kg) did not affect the blood levels of glucose, lactate, pyruvate, acetoacetate, ß-hydroxybutyrate, total and HDL cholesterol, triglycerides, malondialdehyde, and aspartate transaminase and alanine transaminase activities. Therefore, daily supplementation of standard feed with MCT resulted in mild intermittent ketosis. It improved working memory at lower concentrations without significant adverse side effects. At higher concentrations, it improved long-term spatial memory but also resulted in organ weight changes and is likely unsafe. These results highlight the importance of monitoring the metabolic effects of MCT supplementation alongside cognitive assessment in future studies of MCT's neuroprotective properties.

8.
Int J Neurosci ; 133(2): 215-221, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33688783

RESUMO

Purpose of the study: We aimed to investigate whether m-calpain (a Ca2+-dependent neutral cysteine protease) is released from synaptosomes.Materials and methods: This research was carry on Wistar male rats and isolated nerve endings - synaptosomes. The synaptosomal integrity was checked by the method of measuring LDH activity. Activity of calpains was measured by the casein zymography in gel and in solution. Extracellular calpain was detected by immunoprecipitation and immunoblotting procedures Prediction of secreted proteins peptide on a protein sequence through a local version of the PrediSi tool (http://www.predisi.de). The probability of calpain isoform nonclassical secretion was analyzed by using SecretomeP (http://www.cbs.dtu.dk/services/SecretomeP2.0) software.Results: It has been shown that calcium- and time-dependent m-calpain is released from synaptosomes in an activated form or in a form capable of activation, and this process is not a result of a violation of the integrity of synaptosomes. Analysis of the probability of secretion of the small catalytic subunit of rat m-calpain along a nonclassical pathway showed a high probability of its secretion. Additionally, the release of calpain from synaptosomes revealed by us is suppressed by the addition of glyburide, an ABC transporter inhibitor, to the incubation medium. Among extracellular proteins, potential substrates of calpains are of calpains are found, for example, matrix metalloprotease-2 and -9, alpha-synuclein, etc.Conclusions: Active m-calpain is present in the media generated from striatal synaptosomes. Glyburide prevents m-calpain release from striatal synaptosomes.


HighlightsActive m-calpain is present in the media generated from striatal synaptosomes.Glyburide prevents m-calpain release from striatal synaptosomes.


Assuntos
Calpaína , Sinaptossomos , Ratos , Masculino , Animais , Sinaptossomos/química , Sinaptossomos/metabolismo , Glibureto/metabolismo , Ratos Wistar
9.
Neuroimmunomodulation ; : 1-13, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516809

RESUMO

INTRODUCTION: Neurotensin (NTS) is a 13-amino acid neuropeptide functionally linked with the brain dopaminergic system via expression of the NTS peptide or its receptor in dopamine neurons. Neuropeptide-binding immunoglobulins (Igs) are present in humans and can be involved in both physiological and pathological processes. Considering the functional link between NTS and dopamine neurons, we studied the occurrence of NTS-binding IgG autoantibodies in patients with Parkinson's disease (PD). METHODS: Plasma levels of NTS-binding IgG were analyzed using enzyme-linked immunosorbent assay in both male and female PD patents and in age-matched healthy controls. Possible microbial origin of NTS cross-reactive IgG was analyzed by sequence alignment of the 6-amino acid C-terminal NTS pharmacophore with bacterial and viral proteins from the public NCBI database. RESULTS: NTS-binding IgG were detected in the plasma of all study subjects, while their levels were consistently lower in PD patients versus controls (p = 0.0001), independently from age or sex of the study participants. Moreover, PD patients with a more severe stage (2.5-3.0) of the disease had lower levels of NTS-binding IgG (p = 0.0004) than those with a milder stage (1.0-2.0). Furthermore, PD patients taking amantadine or high doses of levodopa had higher levels of NTS-binding IgG than those without medication. Contiguous sequence homology for the NTS pharmacophore was present in several microbial proteins occurring in human gut microbiota. DISCUSSION: The study revealed that NTS-binding IgG occur naturally in humans and that PD patients display their low plasma levels accentuated by disease severity. The functional significance of this finding and its relevance to the pathophysiology of PD, including putative link to gut microbiota, remain to be studied.

10.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498900

RESUMO

Susceptibility and resilience to post-traumatic stress disorder (PTSD) are recognized, but their mechanisms are not understood. Here, the hexobarbital sleep test (HST) was used to elucidate mechanisms of PTSD resilience or susceptibility. A HST was performed in rats 30 days prior to further experimentation. Based on the HST, the rats were divided into groups: (1) fast metabolizers (FM; sleep duration < 15 min); (2) slow metabolizers (SM; sleep duration ≥ 15 min). Then the SM and FM groups were subdivided into stressed (10 days predator scent, 15 days rest) and unstressed subgroups. Among stressed animals, only SMs developed experimental PTSD, and had higher plasma corticosterone (CORT) than stressed FMs. Thus, resilience or susceptibility to PTSD was consistent with changes in glucocorticoid metabolism. Stressed SMs had a pronounced decrease in hippocampal dopamine associated with increased expressions of catecholamine-O-methyl-transferase and DA transporter. In stressed SMs, a decrease in monoaminoxidase (MAO) A was associated with increased expressions of hippocampal MAO-A and MAO-B. BDNF gene expression was increased in stressed FMs and decreased in stressed SMs. These results demonstrate relationships between the microsomal oxidation phenotype, CORT concentration, and anxiety, and they help further the understanding of the role of the liver−brain axis during PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Ratos , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Dopamina/metabolismo , Hipocampo/metabolismo , Corticosterona , Hexobarbital , Modelos Animais de Doenças , Estresse Psicológico/metabolismo
11.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499055

RESUMO

Stress-induced conditions are associated with impaired cerebral blood flow (CBF) and increased risk of dementia and stroke. However, these conditions do not develop in resilient humans and animals. Here the effects of predator stress (PS, cat urine scent, ten days) on CBF and mechanisms of CBF regulation were compared in PS-susceptible (PSs) and PS-resilient (PSr) rats. Fourteen days post-stress, the rats were segregated into PSs and PSr groups based on a behavior-related anxiety index (AI). CBF and its endothelium-dependent changes were measured in the parietal cortex by laser Doppler flowmetry. The major findings are: (1) PS susceptibility was associated with reduced basal CBF and endothelial dysfunction. In PSr rats, the basal CBF was higher, and endothelial dysfunction was attenuated. (2) CBF was inversely correlated with the AI of PS-exposed rats. (3) Endothelial dysfunction was associated with a decrease in eNOS mRNA in PSs rats compared to the PSr and control rats. (4) Brain dopamine was reduced in PSs rats and increased in PSr rats. (5) Plasma corticosterone of PSs was reduced compared to PSr and control rats. (6) A hypercoagulation state was present in PSs rats but not in PSr rats. Thus, potential stress resilience mechanisms that are protective for CBF were identified.


Assuntos
Encéfalo , Circulação Cerebrovascular , Humanos , Animais , Ratos , Fluxometria por Laser-Doppler , Dopamina/farmacologia , Corticosterona/farmacologia
12.
Clin Neurol Neurosurg ; 222: 107472, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36270220

RESUMO

BACKGROUND: Essential tremor (ET) is one of the most common movement disorders. The clinical heterogeneity of ET has been studied for many years, however, there are practically no comprehensive studies dedicated to the assessment of biochemical and electrophysiological parameters associated with the severity of motor and non-motor disorders present in patients with ET and taking into account their heterogeneity. OBJECTIVES: The objective of this report is to differentiate subgroups of essential tremor using cluster analysis of clinical, biochemical and electrophysiological parameters. METHODS: The study enrolled 90 patients with ET. Clustering was perform on the demographic data, scores of scales FTMS, ADL, MoCA, Beka, surface electromyographic data, levels of serum IL-1ß, IL-6, IL-8, IL-10, TNFα, uric acid, ceruloplasmin, MDA. RESULTS: Based on the analysis of the severity of motor manifestations, the psychoemotional state, the adaptive potential of patients and the biochemical aspects of the pathogenesis, three relatively homogeneous clusters of ET were identified. CONCLUSIONS: Revealing the heterogeneity of essential tremor allows to expand understanding the pathogenesis of disease.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/diagnóstico , Tremor Essencial/complicações , Fator de Necrose Tumoral alfa , Interleucina-10 , Ácido Úrico , Ceruloplasmina , Interleucina-6 , Interleucina-8 , Análise por Conglomerados
13.
Front Nutr ; 9: 934497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911092

RESUMO

It is now widely accepted that ketosis (a physiological state characterized by elevated plasma ketone body levels) possesses a wide range of neuroprotective effects. There is a growing interest in the use of ketogenic supplements, including medium-chain triglycerides (MCT), to achieve intermittent ketosis without adhering to a strict ketogenic diet. MCT supplementation is an inexpensive and simple ketogenic intervention, proven to benefit both individuals with normal cognition and those suffering from mild cognitive impairment, Alzheimer's disease, and other cognitive disorders. The commonly accepted paradigm underlying MCT supplementation trials is that the benefits stem from ketogenesis and that MCT supplementation is safe. However, medium-chain fatty acids (MCFAs) may also exert effects in the brain directly. Moreover, MCFAs, long-chain fatty acids, and glucose participate in mutually intertwined metabolic pathways. Therefore, the metabolic effects must be considered if the desired procognitive effects require administering MCT in doses larger than 1 g/kg. This review summarizes currently available research on the procognitive effects of using MCTs as a supplement to regular feed/diet without concomitant reduction of carbohydrate intake and focuses on the revealed mechanisms linked to particular MCT metabolites (ketone bodies, MCFAs), highlighting open questions and potential considerations.

14.
Psychopharmacology (Berl) ; 239(9): 2787-2798, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35545702

RESUMO

RATIONALE: Glibenclamide (GD) is a widely used medical drug; therefore, identifying the mechanisms underlying its pleiotropic effects in the central nervous system is urgent. OBJECTIVES: The aim of this work was to determine the ability of GD to modulate serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) transmission and to assess the dose-dependent effect of GD on cognitive function in rats during natural ageing. METHODS: In Experiment 1, rats received 10, 25, or 50 µg/kg GD intraperitoneally for 10 days. In Experiment 2, rats received 50 µg/kg GD intraperitoneally for 30 days. Spatial and working memory was assessed in the MWM and Y-maze tests, respectively. In both experiments, the levels of DA and 5-HT, their metabolites, and turnover rate were analysed by HPLC-ED in the rat hippocampus and striatum. RESULTS: Changes in DA and 5-HT levels occurred only with a dose of 50 µg/kg GD. Therefore, in the second experiment, we administered a dose of 50 µg/kg GD. At this dose, GD prevented the development of impairments in spatial and working memory. The hippocampal concentrations of DA and DOPAC decreased, and the striatal concentrations of DA, DOPAC, 5-HT, and 5-HIAA increased. CONCLUSION: One of the possible mechanisms of the precognitive effect of GD is its ability to modulate monoamine transmission. Thus, in translating our results to humans, GD can be recommended as a prophylactic agent for natural ageing to reduce the risk of developing cognitive impairments.


Assuntos
Disfunção Cognitiva , Serotonina , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Corpo Estriado , Dopamina/metabolismo , Glibureto/metabolismo , Glibureto/farmacologia , Hipocampo , Humanos , Ácido Hidroxi-Indolacético/metabolismo , Ratos , Serotonina/metabolismo
15.
Front Biosci (Schol Ed) ; 14(1): 3, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35320914

RESUMO

The approach to the study of autophagy has been undergoing considerable change lately: from investigations of the protein components of autophagic machinery to its regulation at different molecular levels. Autophagy is being examinated not only as a separated degradative process per se in cells but as an executor mechanism of certain signaling pathways that converge on it, being activated under specific conditions. Additionally, autophagy is beginning to be observed as a key integral part of cellular reprogramming, the transition from one phenotypic state to another associated with rapid degradation of the previous proteostasis. Macrophages and microglia demonstrate a diversity of phenotypes reflecting their effective capability to phenotypic plasticity. Therefore, understanding the role of autophagy in macrophage and microglia functions needs to be addressed. In this review, we focus on autophagy as a fundamental intracellular process underlying macrophages and microglia polarization.


Assuntos
Macrófagos , Microglia , Autofagia , Macrófagos/metabolismo , Microglia/metabolismo , Transdução de Sinais
16.
Arch Physiol Biochem ; 128(6): 1693-1696, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32654523

RESUMO

In the view of progressively aging human population and increased occurrence of dysmetabolic disorders, such as diabetes mellitus, cognitive impairment becomes a major threat to the national health. To date, the molecular mechanisms of cognitive dysfunction are partially described for diabetes and diseases of different nature, such as Alzheimer disease or Parkinson disease. The emergence of data pointing towards pleotropic effects of hypoglycaemic medicines indicates involvement of their targets in pathogenesis of cognitive impairment. We are aiming here to review available data on the most widely used hypoglycaemic drug, glibenclamide and find possible relationship of its targets to the pathogenesis of cognitive impairment.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Glibureto/farmacologia , Glibureto/uso terapêutico , Hipoglicemiantes/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
17.
Int J Neurosci ; 132(11): 1143-1149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33345671

RESUMO

BACKGROUND: In recent years, there has been discussion that essential tremor (ET) might be a neurodegenerative disease. Indicators of inflammation are considered as possible biomarkers of neurodegeneration. In this connection, the aim of our study was to identify the relationship between serum inflammation markers and clinical features in ET, including the severity of tremor, cognitive decline, depression. METHODS: The serum interleukin-1ß (IL-1ß), IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) levels were measured in 90 ET patients and 90 healthy control people of the corresponding age and gender. Fahn-Tolosa-Marin scale was used for the severity of the tremor. Cognitive function was assessed using the MoCA. Affective symptoms were measured by the Beck Depression Inventory. RESULTS: ET patients had significantly lower serum TNF-α (p < 0.01) but higher serum IL-8 (p < 0.02) and IL-10 (p < 0.01) levels compared to the control patients. The severity of tremor positively correlated with the serum IL-8 level, R = 0.3 (p < 0.01). The serum IL-6 level was higher in ET patients with cognitive impairment compared with normal cognitive ability (p < 0.01). ROC analysis showed that an IL-8 level of 4 pg/ml and higher related with a high risk of severe tremor in ET (AUC-ROC = 0.761). CONCLUSIONS: Our findings demonstrate that neuroinflammation makes a certain contribution to the development of ET.


Assuntos
Tremor Essencial , Doenças Neurodegenerativas , Humanos , Interleucina-6 , Fator de Necrose Tumoral alfa , Interleucina-1beta , Interleucina-10 , Interleucina-8 , Tremor Essencial/diagnóstico , Tremor , Biomarcadores , Inflamação
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298937

RESUMO

Trace amine-associated receptors (TAARs) are a group of G protein-coupled receptors that are expressed in the olfactory epithelium, central nervous system, and periphery. TAAR family generally consists of nine types of receptors (TAAR1-9), which can detect biogenic amines. During the last 5 years, the TAAR5 receptor became one of the most intriguing receptors in this subfamily. Recent studies revealed that TAAR5 is involved not only in sensing socially relevant odors but also in the regulation of dopamine and serotonin transmission, emotional regulation, and adult neurogenesis by providing significant input from the olfactory system to the limbic brain areas. Such results indicate that future antagonistic TAAR5-based therapies may have high pharmacological potential in the field of neuropsychiatric disorders. TAAR5 is known to be expressed in leucocytes as well. To evaluate potential hematological side effects of such future treatments we analyzed several hematological parameters in mice lacking TAAR5. In these mutants, we observed minor but significant changes in the osmotic fragility test of erythrocytes and hematocrit levels. At the same time, analysis of other parameters including complete blood count and reticulocyte levels showed no significant alterations in TAAR5 knockout mice. Thus, TAAR5 gene knockout leads to minor negative changes in the erythropoiesis or eryptosis processes, and further research in that field is needed. The impact of TAAR5 deficiency on other hematological parameters seems minimal. Such negative, albeit minor, effects of TAAR5 deficiency should be taken into account during future TAAR5-based therapy development.


Assuntos
Aminas Biogênicas/metabolismo , Eritrócitos/metabolismo , Fragilidade Osmótica/genética , Receptores Acoplados a Proteínas G/genética , Animais , Sistema Nervoso Central/metabolismo , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Olfatória/metabolismo
19.
Metab Brain Dis ; 36(7): 1917-1928, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34014442

RESUMO

Some mechanisms of neuronal degeneration in endotoxinemia are already well described, but need to be detailed. In this study, we tested the effect of a single intraperitoneal injection of a LPS sub-septic dose (1 mg/kg of animal weight) on calpain activity in the striatum and hippocampus. We showed, that in the hippocampus the day after LPS administration an increase in production of IL-1ß and TNF-α mRNA, followed by elevated mRNA expression and activity of µ- and m-calpains without signs of microglia activation is observed. In striatal cells, the day after LPS injection an increase in expression of IL-1ß, TNF-α, IBA-1, m-calpain and calpastatin mRNA is revealed, which only intensifies over time. The elicited changes are accompanied by a decrease in motor behavior, which can be considered as a sign of sickness behavior. In the hippocampus, 180 days after LPS administration expression of TNF-α, content and activity of µ-calpain are increased. In the striatum, elevation in expression of TNF-α, IBA-1, µ- and m-calpain mRNA, with hyperactivation of only m-calpain, is observed. Significantly reduced motor activity can be a consequence of LPS-induced neuronal death. A long-lasting endotoxin activates microglia that damage neurons via proinflammation cytokines and calpain hyperactivation. The endotoxin hypothesis of neurodegeneration is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin-induced neuroinflammation and m-calpain hyperactivation. Therefore, the drugs, that decrease endotoxin-induced neuroinflammation and differently inhibit µ- or m-calpain, can be used to prevent or reduce the severity of neurodegeneration.


Assuntos
Calpaína , Endotoxinas , Animais , Calpaína/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Hipocampo/metabolismo , Injeções Intraperitoneais , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Ratos , Fator de Necrose Tumoral alfa/metabolismo
20.
Neurol Res ; 43(4): 314-320, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33729106

RESUMO

Background: Essential tremor (ET) and Parkinson's disease (PD) are the two most common movement disorders in adults with similar clinical symptoms, which is hinting towards existence of coincident pathogenesis steps.Objectives: The objective of this report is to characterize the relationship between ET and PD severity and the activity of calcium-dependent proteases calpain in plasma.Methods: The study enrolled 12 volunteers for each condition: ET, PD, healthy. We evaluated the stage of PD on the H&Y scale in patients with PD, and the severity of tremor in patients with ET on the FTMS scale. IL-1ß, TNFα, IL6, IL10 were determined in plasma using ELISA. Calpain activity was measured using fluorescent substrate and zymography methods.Results: We demonstrated that the activity of calpains in plasma of patients with PD and ET increased 5.1 and 4.3 times, respectively. The increase of calpain activity in plasma of PD patients correlated with the content of IL-1ß, for ET such a connection was not found. At the advanced stages of PD calpain activity in plasma was significantly higher than that of the PD group at the early stage, and this increase was mediated by the increase in m-calpain activity. The increase in the tremor severity in ET did not lead to an increase in the activity of calpains in plasma.Conclusions: We observed general increase in the activity of calpains in plasma of both PD and ET patients that hints towards presence of the common steps in the pathogenesis of these diseases.


Assuntos
Calpaína/sangue , Tremor Essencial/sangue , Tremor Essencial/diagnóstico , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Idoso , Biomarcadores/sangue , Ativação Enzimática/fisiologia , Tremor Essencial/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/enzimologia , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA