Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31209, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826744

RESUMO

The ability of ureolytic bacteria to break down stable urea to alkaline ammonia leads to several environmental and health challenges. Ureolytic bacteria such as Helicobacter pylori, Klebsiella pneumoniae, and Proteus mirabilis can become pathogenic and cause persistent infections that can be difficult to treat. Inhibiting urease activity can reduce the growth and pathogenicity of ureolytic bacteria. In the present in vitro study, we investigated the synergistic effects of tannic acid (TA) and the urease inhibitors fluoride (F-) and acetohydroxamic acid (AHA). The concentration of AHA needed for efficient inhibition of the ureolytic activity of K. pneumoniae can be significantly reduced if AHA is coapplied with tannic acid and sodium fluoride (NaF). Thus, only 1.20 µmol l-1 AHA in combination with 0.30 mmol l-1 tannic acid and 0.60 mmol l-1 NaF delayed the onset of ureolytic pH increase by 95.8 % and increased the growth lag phase by 124.3 % relative to untreated K. pneumoniae. At these concentrations, without AHA, TA and NaF increased the onset of the ureolytic pH change by only 37.0 % and the growth lag phase by 52.5 %. The strong inhibition obtained with low concentrations of AHA in triple-compound treatments suggests cobinding of F- and AHA at the urease active site and could reduce the side effects of AHA when it is employed as a drug against e.g. urinary tract infections (UTIs) and blocked catheters. This study reports the basis for a promising novel therapeutic strategy to combat infections caused by ureolytic bacteria and the formation of urinary tract stones and crystalline biofilms on catheters.

2.
Microbiol Resour Announc ; 12(2): e0090322, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36625636

RESUMO

Here, we present the genome sequences of a strain of Streptococcus alactolyticus and two strains of Escherichia coli that were isolated from feces samples from domestic pigs in Denmark. The genome sequences contribute to a better understanding of the microbiological processes in the feces and manure of domestic pigs.

3.
Biochim Biophys Acta Proteins Proteom ; 1870(5): 140771, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306228

RESUMO

Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.


Assuntos
Colágeno , Tirosina , Animais , Arginina , Sítios de Ligação , Adesão Celular , Colágeno/química , Colágeno/metabolismo , Colágeno Tipo I , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Peptídeos/química , Suínos , Tirosina/análogos & derivados
4.
BMC Evol Biol ; 20(1): 73, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576155

RESUMO

BACKGROUND: Small leucine-rich repeat protein (SLRP) family members contain conserved leucine-rich repeat motifs flanked by highly variable N- and C-terminal regions. Most class II and III SLRPs have tyrosine-rich N-terminal regions and some of these are sulfated. However, the evolutionary origin and conservation of the tyrosine-rich and acidic terminal regions remain undetermined. In this study, we present the most comprehensive multiple sequence alignment (MSA) analyses of all eight class II and III SLRPs to date. Based on the level of conservation of tyrosine residues and adjacent sequences, we predict which tyrosine residues are most likely to be sulfated in the terminal regions of human class II and III SLRPs. RESULTS: Using this novel approach, we predict a total of 22 tyrosine sulfation sites in human SLRPs, of which only 8 sites had been experimentally identified in mammals. Our analyses suggest that sulfation-prone, tyrosine-rich and acidic terminal regions of the class II and III SLRPs emerged via convergent evolution at different stages of vertebrate evolution, coinciding with significant evolutionary events including the development of endochondral bones and articular cartilage, the aquatic to terrestrial transition, and the formation of an amnion. CONCLUSIONS: Our study suggests that selective pressures due to changes in life conditions led to the formation of sulfotyrosine-rich and acidic terminal regions. We believe the independent emergence and evolution of sulfotyrosine-rich and acidic N- and C-terminal regions have provided each class II and III SLRP member with novel vital functions required to develop new specialized extracellular matrices and tissues in vertebrate species.


Assuntos
Tecido Conjuntivo/metabolismo , Evolução Molecular , Proteínas/química , Proteínas/metabolismo , Sulfatos/metabolismo , Tirosina/metabolismo , Animais , Humanos , Proteínas de Repetições Ricas em Leucina , Proteoglicanas/química , Proteoglicanas/genética , Proteoglicanas/metabolismo , Vertebrados/metabolismo
5.
Environ Sci Technol ; 54(12): 7639-7650, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407626

RESUMO

Gaseous emissions from livestock production are complex mixtures including ammonia, methane, volatile organic compounds (VOC), and H2S. These contribute to eutrophication, reduced air quality, global warming, and odor nuisance. It is imperative that these gases are mitigated in an environmentally sustainable manner. We present the discovery of a microbial inhibitor combo consisting of tannic acid and sodium fluoride (TA-NaF), which exhibits clear synergistic inhibition of ammonia production in pure bacteria culture and in pig manure while simultaneously inhibiting methane and odorant (H2S and VOC) emissions. In laboratory headspace experiments on pig manure, we used proton-transfer-reaction mass spectrometry and cavity ring-down spectroscopy to measure the effect of TA-NaF on gaseous emissions. Ammonia emission was reduced by more than 95%, methane by up to ∼99%, and odor activity value by more than 50%. Microbial community analysis and gas emission data suggest that TA-NaF acts as an efficient generic microbial inhibitor, and we hypothesize that the synergistic inhibitory effect on ammonia production is related to tannic acid causing cell membrane leakage allowing fluoride ions easy access to urease.


Assuntos
Amônia , Metano , Amônia/análise , Animais , Fluoretos , Gado , Esterco , Odorantes , Suínos , Taninos
6.
Sci Rep ; 10(1): 8503, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444844

RESUMO

The nickel-dependent urease enzyme is responsible for the hydrolysis of urea to ammonia and carbon dioxide. A number of bacteria produce urease (ureolytic bacteria) and are associated with various infectious diseases and ammonia emissions from agriculture. We report the first comprehensive comparison of the inhibition of urease activity by compounds analysed under the same conditions. Thus, 71 commercially available compounds were screened for their anti-ureolytic properties against both the ureolytic bacterium Klebsiella pneumoniae and purified jack bean urease. Of the tested compounds, 30 showed more than 25% inhibition of the ureolytic activity of Klebsiella pneumoniae or jack bean urease, and among these, carbon disulfide, N-phenylmaleimide, diethylenetriaminepentaacetic acid, sodium pyrrolidinedithiocarbamate, 1,2,4-butanetricarboxylic acid, tannic acid, and gallic acid have not previously been reported to possess anti-ureolytic properties. The diverse effects of metal ion chelators on ureolysis were investigated using a cellular nickel uptake assay. Ethylenediaminetetraacetic acid (EDTA) and dimethylglyoxime (DMG) clearly reduced the nickel import and ureolytic activity of cells, oxalic acid stimulated nickel import but reduced the ureolytic activity of cells, 1,2,4-butanetricarboxylic acid strongly stimulated nickel import and slightly increased the ureolytic activity of cells, while L-cysteine had no effect on nickel import but efficiently reduced the ureolytic activity of cells.


Assuntos
Canavalia/enzimologia , Inibidores Enzimáticos/farmacologia , Klebsiella pneumoniae/metabolismo , Níquel/metabolismo , Ureia/metabolismo , Urease/antagonistas & inibidores , Transporte Biológico , Inibidores Enzimáticos/classificação , Hidrólise , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento
7.
Microbiologyopen ; 9(3): e976, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31943918

RESUMO

The enzyme urease is widespread in nature and catalyzes the hydrolysis of urea to form ammonia and carbonic acid. The high proficiency of the enzyme is associated with a wide range of societal challenges. In agriculture, bacterial urease activity leads to loss of fertilizer through NH3 emission, which has a negative impact on the environment and human health. Urease is also an essential virulence factor for several pathogenic bacteria. To screen for potential urease inhibitors, efficient, sensitive, and accurate urease activity assays are needed. However, most urease activity assays are labor-intensive and become time-consuming when used to screen multiple samples. Based on systematic optimization, we have developed a urea-containing growth medium and method for continuous real-time monitoring and screening of urease activity from both bacterial cells and pure urease in a plate reader setup. The defined M9-based urea (M9U) medium was found to be more sensitive and suitable for a plate reader setup than both Christensen's urea broth (CUB) and Stuart's urea broth (SUB), which are established and well-known complex urea media that formed the principle foundation of M9U. Furthermore, we show that urease activity measurements using the M9U medium in our plate reader-based method allow reliable high-throughput screening of urease inhibitors.


Assuntos
Bactérias/metabolismo , Ureia/metabolismo , Urease/metabolismo , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Sistema Livre de Células , Meios de Cultura , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Hidrólise
8.
Protein Expr Purif ; 166: 105507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586598

RESUMO

The SUMO fusion system is widely used to facilitate recombinant expression and production of difficult-to-express proteins. After purification of the recombinant fusion protein, removal of the SUMO-tag is accomplished by the yeast cysteine protease, SUMO protease 1 (Ulp1), which specifically recognizes the tertiary fold of the SUMO domain. At present, the expression of the catalytic domain, residues 403-621, is used for obtaining soluble and biologically active Ulp1. However, we have observed that the soluble and catalytically active Ulp1403-621 inhibits the growth of E. coli host cells. In the current study, we demonstrate an alternative route for producing active Ulp1 catalytic domain from a His-tagged N-terminally truncated variant, residues 416-621, which is expressed in E. coli inclusion bodies and subsequently refolded. Expressing the insoluble Ulp1416-621 variant is advantageous for achieving higher production yields. Approximately 285 mg of recombinant Ulp1416-621 was recovered from inclusion bodies isolated from 1 L of high cell-density E. coli batch fermentation culture. After Ni2+-affinity purification of inactive and denatured Ulp1416-621 in 7.5 M urea, different refolding conditions with varying l-arginine concentration, pH, and temperature were tested. We have successfully refolded the enzyme in 0.25 M l-arginine and 0.5 M Tris-HCl (pH 7) at room temperature. Approximately 80 mg of active Ulp1416-621 catalytic domain can be produced from 1 L of high cell-density E. coli culture. We discuss the applicability of inclusion body-directed expression and considerations for obtaining high expression yields and efficient refolding conditions to reconstitute the active protein fold.


Assuntos
Cisteína Endopeptidases/genética , Escherichia coli/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Técnicas de Cultura Celular por Lotes , Domínio Catalítico , Cromatografia de Afinidade , Clonagem Molecular , Cisteína Endopeptidases/química , Escherichia coli/enzimologia , Fermentação , Concentração de Íons de Hidrogênio , Corpos de Inclusão/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Temperatura
9.
Biochemistry ; 54(19): 2943-56, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25910219

RESUMO

Mutations in the transforming growth factor beta-induced (TGFBI) gene result in a group of hereditary diseases of the cornea that are collectively known as TGFBI corneal dystrophies. These mutations translate into amino acid substitutions mainly within the fourth fasciclin 1 domain (FAS1-4) of the transforming growth factor beta-induced protein (TGFBIp) and cause either amyloid or nonamyloid protein aggregates in the anterior and central parts of the cornea, depending on the mutation. The A546T substitution in TGFBIp causes lattice corneal dystrophy (LCD), which manifests as amyloid-type aggregates in the corneal stroma. We previously showed that the A546T substitution renders TGFBIp and the FAS1-4 domain thermodynamically less stable compared with the wild-type (WT) protein, and the mutant FAS1-4 is prone to amyloid formation in vitro. In the present study, we identified the core of A546T FAS1-4 amyloid fibrils. Significantly, we identified the Y571-R588 region of TGFBIp, which we previously found to be enriched in amyloid deposits in LCD patients. We further found that the Y571-R588 peptide seeded fibrillation of A546T FAS1-4, and, more importantly, we demonstrated that native TGFBIp aggregates in the presence of fibrils formed by the core peptide. Collectively, these data suggest an involvement of the Y571-R588 peptide in LCD pathophysiology.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Substância Própria/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
PLoS One ; 9(11): e110402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25397404

RESUMO

Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production.


Assuntos
Amônia/metabolismo , Fezes/enzimologia , Esterco , Urease/metabolismo , Animais , Catálise , Bovinos , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/metabolismo , Sus scrofa , Urina
11.
Biochim Biophys Acta ; 1844(2): 374-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275507

RESUMO

Predation plays a major role in energy and nutrient flow in the biological food chain. Plant carnivory has attracted much interest since Darwin's time, but many fundamental properties of the carnivorous lifestyle are largely unexplored. In particular, the chain of events leading from prey perception to its digestive utilization remains to be elucidated. One of the first steps after the capture of animal prey, i.e. the enzymatic breakup of the insects' chitin-based shell, is reflected by considerable chitinase activity in the secreted digestive fluid in the carnivorous plant Venus flytrap. This study addresses the molecular nature, function, and regulation of the underlying enzyme, VF chitinase-I. Using mass spectrometry based de novo sequencing, VF chitinase-I was identified in the secreted fluid. As anticipated for one of the most prominent proteins in the flytrap's "green stomach" during prey digestion, transcription of VF chitinase-I is restricted to glands and enhanced by secretion-inducing stimuli. In their natural habitat, Venus flytrap is exposed to high temperatures. We expressed and purified recombinant VF chitinase-I and show that the enzyme exhibits the hallmark properties expected from an enzyme active in the hot and acidic digestive fluid of Dionaea muscipula. Structural modeling revealed a relative compact globular form of VF chitinase-I, which might contribute to its overall stability and resistance to proteolysis. These peculiar characteristics could well serve industrial purposes, especially because of the ability to hydrolyze both soluble and crystalline chitin substrates including the commercially important cleavage of α-chitin.


Assuntos
Artrópodes/fisiologia , Quitinases/metabolismo , Digestão , Droseraceae/enzimologia , Cadeia Alimentar , Sequência de Aminoácidos , Animais , Quitina/metabolismo , Quitinases/química , Quitinases/genética , Clonagem Molecular , Droseraceae/genética , Modelos Moleculares , Dados de Sequência Molecular , Pichia , Estrutura Secundária de Proteína
12.
Proteomics Clin Appl ; 8(3-4): 168-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24302499

RESUMO

PURPOSE: In this study, we investigated whether the phenotypic difference observed between two lattice corneal dystrophy type 1 (LCD type 1) cases caused by either a single A546D substitution or an A546D/P551Q double substitution in TGFBIp (transforming growth factor beta induced protein) can be ascribed to (i) a difference in the proteomes of corneal amyloid deposits, (ii) altered proteolysis of TGFBIp, or (iii) structural changes of TGFBIp introduced by the P551Q amino acid substitution. EXPERIMENTAL DESIGN: Amyloid deposits were isolated from the corneas of two siblings with LCD type 1 resulting from A546D/P551Q mutations in the TGFBI gene using laser capture microdissection and subsequently analyzed by LC-MS/MS. Proteolytic processing of TGFBIp was addressed by counting peptide spectra. Lastly, to study the possible effect of the P551Q substitution, recombinant FAS1-4 domain variants were subjected to in vitro stability assays. RESULTS: The amyloid proteomes and TGFBIp processing of the two A546D/P551Q LCD type 1 cases were similar to each other as well as to the A546D amyloid proteome previously reported by us. The stability assays revealed a minor destabilization of the FAS1-4 domain upon the addition of the P551Q mutation, moreover, it resulted in different accessibility to tryptic cleavage sites between the A546D and A546D/P551Q mutant FAS1-4 domain variants. CONCLUSION AND CLINICAL RELEVANCE: The difference in A546D and A546D/P551Q LCD type 1 phenotypes cannot be ascribed to altered corneal amyloid composition or altered in vivo proteolytic processing of TGFBIp. Instead, a small difference in thermodynamic stability introduced by the P551Q mutation most likely causes structural changes of TGFBIp. The MS proteomics data have been deposited to the ProteomeXchange with identifier PXD000307 (http://proteomecentral.proteomexchange.org/dataset/PXD000307).


Assuntos
Córnea/patologia , Distrofias Hereditárias da Córnea/genética , Proteínas da Matriz Extracelular/genética , Fator de Crescimento Transformador beta/genética , Substituição de Aminoácidos/genética , Amiloide/metabolismo , Cromatografia Líquida , Córnea/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/química , Humanos , Microdissecção e Captura a Laser , Mutação , Proteólise , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta/química
13.
Biochim Biophys Acta ; 1834(12): 2812-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24129074

RESUMO

Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/ßig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3' containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions.


Assuntos
Substituição de Aminoácidos , Distrofias Hereditárias da Córnea , Proteínas da Matriz Extracelular/química , Mutação de Sentido Incorreto , Proteólise , Fator de Crescimento Transformador beta/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Biochemistry ; 52(16): 2821-7, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23556985

RESUMO

TGFBIp, also known as keratoepithelin and ßig-h3, is among the most abundant proteins in the human cornea, and approximately 60% is associated with the insoluble fraction following extraction in sodium dodecyl sulfate (SDS) sample buffer. TGFBIp is of particular interest because a wide range of mutations causes amyloid or fuchsinophilic crystalloid deposits in the cornea leading to visual impairment. We show that the SDS-insoluble fraction of TGFBIp from porcine and human corneas is covalently linked via a reducible bond to the NC3 domain of type XII collagen in a TGFBIp:type XII collagen stoichiometric ratio of 2:1. Because type XII collagen is anchored to striated collagen fibers of the extracellular matrix, its interaction with TGFBIp is likely to provide anchoring for cells to the extracellular matrix through the integrin binding capability of TGFBIp. Furthermore, the TGFBIp-type XII collagen molecule will affect our understanding of the molecular pathogenesis of the TGFBI-linked corneal dystrophies.


Assuntos
Colágeno Tipo XII/química , Colágeno Tipo XII/metabolismo , Córnea/química , Proteínas da Matriz Extracelular/química , Fator de Crescimento Transformador beta/química , Animais , Dissulfetos/química , Dissulfetos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Suínos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Mol Vis ; 19: 861-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23592924

RESUMO

PURPOSE: Specific mutations in the transforming growth factor beta induced (TGFBI) gene are associated with lattice corneal dystrophy (LCD) type 1 and its variants. In this study, we performed an in-depth proteomic analysis of human corneal amyloid deposits associated with the heterozygous A546D mutation in TGFBI. METHODS: Corneal amyloid deposits and the surrounding corneal stroma were procured by laser capture microdissection from a patient with an A546D mutation in TGFBI. Proteins in the captured corneal samples and healthy corneal stroma were identified with liquid chromatography-tandem mass spectrometry and quantified by calculating exponentially modified Protein Abundance Index values. Mass spectrometry data were further compared for identifying enriched regions of transforming growth factor beta induced protein (TGFBIp/keratoepithelin/ßig-h3) and detecting proteolytic cleavage sites in TGFBIp. RESULTS: A C-terminal fragment of TGFBIp containing residues Y571-R588 derived from the fourth fasciclin 1 domain (FAS1-4), serum amyloid P-component, apolipoprotein A-IV, clusterin, and serine protease HtrA1 were significantly enriched in the amyloid deposits compared to the healthy cornea. The proteolytic cleavage sites in TGFBIp from the diseased cornea are in accordance with the activity of serine protease HtrA1. We also identified small amounts of the serine protease kallikrein-14 in the amyloid deposits. CONCLUSIONS: Corneal amyloid caused by the A546D mutation in TGFBI involves several proteins associated with other varieties of amyloidosis. The proteomic data suggest that the sequence 571-YHIGDEILVSGGIGALVR-588 contains the amyloid core of the FAS1-4 domain of TGFBIp and point at serine protease HtrA1 as the most likely candidate responsible for the proteolytic processing of amyloidogenic and aggregated TGFBIp, which explains the accumulation of HtrA1 in the amyloid deposits. With relevance to identifying serine proteases, we also found glia-derived nexin (protease-nexin 1) in the amyloid deposits, making this serine protease inhibitor a good candidate for the physiologically relevant inhibitor of one of the amyloid-associated serine proteases in the cornea and probably in other tissues. Noteworthy, the present results are in accordance with our findings from a previous study of corneal amyloid deposits caused by the V624M mutation in TGFBI, suggesting a common mechanism for lattice corneal dystrophies (LCDs) associated with mutations in the TGFBIp FAS1-4 domain.


Assuntos
Córnea/metabolismo , Córnea/patologia , Proteínas da Matriz Extracelular/metabolismo , Placa Amiloide/metabolismo , Serina Endopeptidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Idoso , Sequência de Aminoácidos , Análise por Conglomerados , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Substância Própria/metabolismo , Substância Própria/patologia , Proteínas da Matriz Extracelular/química , Feminino , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Microdissecção , Dados de Sequência Molecular , Inibidores de Proteases/metabolismo , Estrutura Terciária de Proteína , Proteólise , Proteômica , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta/química , Tripsina/metabolismo
16.
Mol Cell Proteomics ; 11(11): 1306-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22891002

RESUMO

The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.


Assuntos
Droseraceae/metabolismo , Insetos/metabolismo , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Droseraceae/enzimologia , Droseraceae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteólise , Alinhamento de Sequência , Transcriptoma
17.
PLoS One ; 7(12): e51803, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284771

RESUMO

Autotomy refers to the voluntary shedding of a body part; a renowned example is tail loss among lizards as a response to attempted predation. Although many aspects of lizard tail autotomy have been studied, the detailed morphology and mechanism remains unclear. In the present study, we showed that tail shedding by the Tokay gecko (Gekko gecko) and the associated extracellular matrix (ECM) rupture were independent of proteolysis. Instead, lizard caudal autotomy relied on biological adhesion facilitated by surface microstructures. Results based on bio-imaging techniques demonstrated that the tail of Gekko gecko was pre-severed at distinct sites and that its structural integrity depended on the adhesion between these segments.


Assuntos
Adaptação Biológica , Lagartos/fisiologia , Regeneração/fisiologia , Automutilação , Cauda/fisiologia , Animais , Lagartos/anatomia & histologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Varredura , Peptídeo Hidrolases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cauda/anatomia & histologia
18.
Exp Eye Res ; 96(1): 163-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155582

RESUMO

Different types of granular corneal dystrophy (GCD) and lattice corneal dystrophy (LCD) are associated with mutations in the transforming growth factor beta induced gene (TGFBI). These dystrophies are characterized by the formation of non-amyloid granular deposits (GCDs) and amyloid (LCD type 1 and its variants) in the cornea. Typical corneal non-amyloid deposits from GCD type 2 (R124H), amyloid from a variant of LCD type 1 (V624M) and disease-free tissue controls were procured by laser capture microdissection and analyzed by tandem mass spectrometry. Label-free quantitative comparisons of deposits and controls suggested that the non-amyloid sample (R124H) specifically accumulated transforming growth factor beta induced protein (TGFBIp/keratoepithelin/ßig-h3), serum amyloid P-component, clusterin, type III collagen, keratin 3, and histone H3-like protein. The amyloid (V624M) similarly accumulated serum amyloid P-component and clusterin but also a C-terminal fragment of TGFBIp containing residues Y571-R588 derived from the fourth fasciclin-1 domain (FAS1-4), apolipoprotein E and apolipoprotein A-IV. Significantly, analyses of the amyloid sample also revealed the presence of the serine protease Htr (High-temperature requirement) A1 and a number of proteolytic cleavage sites in the FAS1-4 domain of TGFBIp. These cleavage sites were consistent with the ligand binding and proteolytic activity of HtrA1 suggesting that it plays a role in the proteolytic processing of the amyloidogenic FAS1-4 domain. Taken together, the data suggest that the amyloidogenic-prone region of the fourth FAS1 domain of TGFBIp encompasses the Y571-R588 peptide and that HtrA1 is involved in the proteolytic processing of TGFBIp-derived amyloid in vivo.


Assuntos
Amiloidose Familiar/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Substância Própria/metabolismo , Proteínas da Matriz Extracelular/genética , Mutação , Placa Amiloide/metabolismo , Fator de Crescimento Transformador beta/genética , Amiloidose Familiar/genética , Apolipoproteínas/metabolismo , Cromatografia Líquida , Clusterina/metabolismo , Colágeno Tipo III/metabolismo , Distrofias Hereditárias da Córnea/genética , Humanos , Queratina-3/metabolismo , Microdissecção e Captura a Laser , Proteólise , Proteômica , Componente Amiloide P Sérico/metabolismo , Espectrometria de Massas em Tandem
19.
J Biol Chem ; 286(7): 4951-8, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21135107

RESUMO

Mutations in the human TGFBI gene encoding TGFBIp have been linked to protein deposits in the cornea leading to visual impairment. The protein consists of an N-terminal Cys-rich EMI domain and four consecutive fasciclin 1 (FAS1) domains. We have compared the stabilities of wild-type (WT) human TGFBIp and six mutants known to produce phenotypically distinct deposits in the cornea. Amino acid substitutions in the first FAS1 (FAS1-1) domain (R124H, R124L, and R124C) did not alter the stability. However, substitutions within the fourth FAS1 (FAS1-4) domain (A546T, R555Q, and R555W) affected the overall stability of intact TGFBIp revealing the following stability ranking R555W>WT>R555Q>A546T. Significantly, the stability ranking of the isolated FAS1-4 domains mirrored the behavior of the intact protein. In addition, it was linked to the aggregation propensity as the least stable mutant (A546T) forms amyloid fibrils while the more stable variants generate non-amyloid amorphous deposits in vivo. Significantly, the data suggested that both an increase and a decrease in the stability of FAS1-4 may unleash a disease mechanism. In contrast, amino acid substitutions in FAS1-1 did not affect the stability of the intact TGFBIp suggesting that molecular the mechanism of disease differs depending on the FAS1 domain carrying the mutation.


Assuntos
Substituição de Aminoácidos , Amiloide/metabolismo , Córnea/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mutação de Sentido Incorreto , Fator de Crescimento Transformador beta/metabolismo , Amiloide/genética , Distrofias Hereditárias da Córnea/genética , Proteínas da Matriz Extracelular/genética , Células HEK293 , Humanos , Estabilidade Proteica , Estrutura Terciária de Proteína , Fator de Crescimento Transformador beta/genética
20.
Exp Eye Res ; 90(1): 57-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19788893

RESUMO

Transforming growth factor beta induced protein (TGFBIp, also named keratoepithelin) is an extracellular matrix protein abundant in the cornea. The purpose of this study was to determine the expression and processing of TGFBIp in the normal human cornea during postnatal development and aging. TGFBIp in corneas from individuals ranging from six months to 86 years of age was detected and quantified by immunoblotting. The level of TGFBIp in the cornea increases about 30% between 6 and 14 years of age, and adult corneas contain 0.7-0.8 microg TGFBIp per mg wet tissue. Two-dimensional (2-D) immunoblots of the corneal extracts showed a characteristic "zig-zag" pattern formed by different lower-molecular mass TGFBIp isoforms (30-60 kDa). However, the relative abundance of the different isoforms was different between infant corneas (<1 year) and the child/adult corneas (>6 years). Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) data of TGFBIp isoforms separated on large 2-D gels show that TGFBIp is proteolytically processed from the N-terminus. This observation was supported by in silico 2-D gel electrophoresis showing that sequential proteolytical trimming events from the N-terminus of mature TGFBIp generate TGFBIp isoforms which form a similar "zig-zag" pattern when separated by 2-D polyacrylamide gel electrophoresis (PAGE). This study shows that in humans TGFBIp is more abundant in mature corneas than in the developing cornea and that the processing of TGFBIp changes during postnatal development of the cornea. In addition, TGFBIp appears to be degraded in a highly orchestrated manner in the normal human cornea with the resulting C-terminal fragments being retained in the cornea. The age-related changes in the expression and processing of corneal TGFBIp suggests that TGFBIp may play a role in the postnatal development and maturation of the cornea. Furthermore, these observations may be relevant to the age at which mutant TGFBIp deposits in the cornea in those dystrophies caused by mutations in the transforming growth factor beta induced gene (TGFBI) as well as the mechanisms of corneal protein deposition.


Assuntos
Envelhecimento/fisiologia , Córnea/crescimento & desenvolvimento , Córnea/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adolescente , Idoso de 80 Anos ou mais , Criança , Eletroforese em Gel Bidimensional , Feminino , Humanos , Immunoblotting , Lactente , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA