Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739545

RESUMO

BACKGROUND: Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular diseases (CVD). Dysregulated pro-apoptotic ceramide synthesis reduces ß-cell insulin secretion, thereby promoting hyperglycemic states which may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor cardiovascular outcomes. Sirtuin-1 (SIRT1) is a NAD + - dependent deacetylase that protects against pancreatic ß-cell dysfunction; however, systemic levels are decreased in obese T2D mice and may promote pro-apoptotic ceramide synthesis and hyperglycemia. Herein, we aimed to assess the effects of restoring circulating SIRT1 levels to prevent metabolic imbalance in obese and diabetic mice. METHODS AND RESULTS: Circulating SIRT1 levels were reduced in obese diabetic mice (db/db) as compared to age-matched non-diabetic db/+ controls. Restoration of SIRT1 plasma levels with recombinant murine SIRT1 for 4-weeks prevented body weight gain, improved glucose tolerance, insulin sensitivity and vascular function in mice models of obesity and T2D. Untargeted lipidomics revealed that SIRT1 restored insulin-secretory function of ß-cells by reducing synthesis and accumulation of pro-apoptotic ceramides. Molecular mechanisms involved direct binding to and deacetylation of Toll-like receptor 4 (TLR4) by SIRT1 in ß-cells thereby decreasing the rate limiting enzymes of sphingolipid synthesis SPTLC1/2 via AKT/NF-κB. Among T2D patients, those with high baseline plasma levels of SIRT1 prior to metabolic surgery displayed restored ß-cell function (HOMA2- ß) and were more likely to have T2D remission during follow-up. CONCLUSION: Acetylation of TLR4 promotes ß-cell dysfunction via ceramide synthesis in T2D, which is blunted by systemic SIRT1 replenishment. Hence, restoration of systemic SIRT1 may provide a novel therapeutic strategy to counteract toxic ceramide synthesis and mitigate cardiovascular complications of T2D.

2.
Clin Immunol ; 244: 109118, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084852

RESUMO

To enable accurate, high-throughput and longer-term studies of the immunopathogenesis of type 1 diabetes (T1D), we established three in-vitro islet-immune injury models by culturing spheroids derived from primary human islets with proinflammatory cytokines, activated peripheral blood mononuclear cells or HLA-A2-restricted preproinsulin-specific cytotoxic T lymphocytes. In all models, ß-cell function declined as manifested by increased basal and decreased glucose-stimulated insulin release (GSIS), and decreased intracellular insulin content. Additional hallmarks of T1D progression such as loss of the first-phase insulin response (FFIR), increased proinsulin-to-insulin ratios, HLA-class I expression, and inflammatory cytokine release were also observed. Using these models, we show that liraglutide, a glucagon-like peptide 1 receptor agonist, prevented loss of GSIS under T1D-relevant stress, by preserving the FFIR and decreasing immune cell infiltration and cytokine secretion. Our results corroborate that liraglutide mediates an anti-inflammatory effect that aids in protecting ß-cells from the immune-mediated attack that leads to T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucose/metabolismo , Antígeno HLA-A2 , Humanos , Insulina , Células Secretoras de Insulina/metabolismo , Leucócitos Mononucleares/metabolismo , Liraglutida/metabolismo , Liraglutida/farmacologia , Proinsulina/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 854094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860702

RESUMO

Restoration of ß-cell mass through the induction of proliferation represents an attractive therapeutic approach for the treatment of diabetes. However, intact and dispersed primary islets suffer from rapidly deteriorating viability and function ex vivo, posing a significant challenge for their experimental use in proliferation studies. Here, we describe a novel method for the assessment of compound effects on ß-cell proliferation and count using reaggregated primary human islets, or islet microtissues (MTs), which display homogeneous size and tissue architecture as well as robust and stable functionality and viability for 4 weeks in culture. We utilized this platform to evaluate the dose-dependent short- and long-term effects of harmine on ß-cell proliferation and function. Following compound treatment and EdU incorporation, islet MTs were stained and confocal-imaged for DAPI (nuclear marker), NKX6.1 (ß-cell marker), and EdU (proliferation marker), allowing automated 3D-analysis of number of total cells, ß-cells, and proliferating ß- and non-ß-cells per islet MT. In parallel, insulin secretion, intracellular insulin and ATP contents, and Caspase 3/7 activity were analyzed to obtain a comprehensive overview of islet MT function and viability. We observed that 4-day harmine treatment increased ß- and non-ß-cell proliferation, NKX6.1 expression, and basal and stimulated insulin secretion in a dose-dependent manner, while fold-stimulation of secretion peaked at intermediate harmine doses. Interestingly, 15-day harmine treatment led to a general reduction in harmine's proliferative effects as well as altered dose-dependent trends. The described methodology provides a unique tool for in vitro high-throughput evaluation of short- and long-term changes in human ß-cell proliferation, count and fraction along with a variety of functional parameters, in a representative 3D human islet model.


Assuntos
Harmina , Células Secretoras de Insulina , Proliferação de Células , Harmina/metabolismo , Harmina/farmacologia , Humanos , Insulina/metabolismo , Insulina/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/metabolismo
4.
J Endocrinol ; 253(1): 1-11, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017316

RESUMO

Pancreatic ß-cells depend on the well-balanced regulation of cytosolic zinc concentrations, providing sufficient zinc ions for the processing and storage of insulin, but avoiding toxic effects. The zinc transporter ZnT8, encoded by SLC30A8,is a key player regarding islet cell zinc homeostasis, and polymorphisms in this gene are associated with altered type 2 diabetes susceptibility in man. The objective of this study was to investigate the role of ZnT8 and zinc in situations of cellular stress as hypoxia or inflammation. Isolated islets of WT and global ZnT8-/- mice were exposed to hypoxia or cytokines and cell death was measured. To explore the role of changing intracellular Zn2+ concentrations, WT islets were exposed to different zinc concentrations using zinc chloride or the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN). Hypoxia or cytokine (TNF-α, IFN-γ, IL1-ß) treatment induced islet cell death, but to a lesser extent in islets from ZnT8-/- mice, which were shown to have a reduced zinc content. Similarly, chelation of zinc with TPEN reduced cell death in WT islets treated with hypoxia or cytokines, whereas increased zinc concentrations aggravated the effects of these stressors. This study demonstrates a reduced rate of cell death in islets from ZnT8-/- mice as compared to WT islets when exposed to two distinct cellular stressors, hypoxia or cytotoxic cytokines. This protection from cell death is, in part, mediated by a reduced zinc content in islet cells of ZnT8-/- mice. These findings may be relevant for altered diabetes burden in carriers of risk SLC30A8 alleles in man.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Transportador 8 de Zinco/genética , Animais , Apoptose/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Hipóxia Celular , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Citocinas/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Zinco/metabolismo , Zinco/farmacologia , Transportador 8 de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA