Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 194: 110197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447870

RESUMO

PURPOSE: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS: Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above âˆ¼ 50 Gy with an FMF of âˆ¼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION: The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.


Assuntos
Relação Dose-Resposta à Radiação , Elétrons , Embrião não Mamífero , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Elétrons/uso terapêutico , Embrião não Mamífero/efeitos da radiação , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Prótons , Eficiência Biológica Relativa
2.
Phys Med Biol ; 68(18)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37579761

RESUMO

Objective.Laser plasma-based accelerators (LPAs) of protons can contribute to research of ultra-high dose rate radiobiology as they provide pulse dose rates unprecedented at medical proton sources. Yet, LPAs pose challenges regarding precise and accurate dosimetry due to the high pulse dose rates, but also due to the sources' lower spectral stability and pulsed operation mode. Forin vivomodels, further challenges arise from the necessary small field dosimetry for volumetric dose distributions. For these novel source parameters and intended applications, a dosimetric standard needs to be established.Approach.In this work, we present a dosimetry and beam monitoring framework forin vivoirradiations of small target volumes with LPA protons, solving aforementioned challenges. The volumetric dose distribution in a sample (mean dose value and lateral/depth dose inhomogeneity) is provided by combining two independent dose measurements using radiochromic films (dose rate-independent) and ionization chambers (dose rate-dependent), respectively. The unique feature of the dosimetric setup is beam monitoring with a transmission time-of-flight spectrometer to quantify spectral fluctuations of the irradiating proton pulses. The resulting changes in the depth dose profile during irradiation of anin vivosample are hence accessible and enable pulse-resolved depth dose correction for each dose measurement.Main results.A first successful small animal pilot study using an LPA proton source serves as a testcase for the presented dosimetry approach and proves its performance in a realistic setting.Significance.With several facilities worldwide either setting up or already using LPA infrastructure for radiobiological studies with protons, the importance of LPA-adapted dosimetric frameworks as presented in this work is clearly underlined.


Assuntos
Prótons , Radiometria , Animais , Projetos Piloto , Radiometria/métodos , Lasers , Radiobiologia , Dosimetria Fotográfica/métodos
3.
Phys Med Biol ; 68(18)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607554

RESUMO

Objective. Local magnetic resonance (MR) signal loss was previously observed during proton beam irradiation of free-floating water phantoms at ambient temperature using a research prototype in-beam magnetic resonance imaging (MRI) scanner. The emergence of this MR signal loss was hypothesised to be dependent on beam-induced convection. The aim of this study was therefore to unravel whether physical conditions allowing the development of convection must prevail for the beam-induced MRI signatures to emerge.Approach. The convection dependence of MRI magnitude signal-based proton beam visualisation was investigated in combined irradiation and imaging experiments using a gradient echo (GE)-based time-of-flight (ToF) angiography pulse sequence, which was first tested for its suitability for proton beam visualisation in free-floating water phantoms at ambient temperature. Subsequently, buoyant convection was selectively suppressed in water phantoms using either mechanical barriers or temperature control of water expansivity. The underlying contrast mechanism was further assessed using sagittal imaging and variation of T1 relaxation time-weighting.Main results. In the absence of convection-driven water flow, weak beam-induced MR signal changes occurred, whereas strong changes did occur when convection was not mechanically or thermally inhibited. Moreover, the degree of signal loss was found to change with the variation of T1-weighting. Consequently, beam-induced MR signal loss in free-floating water phantoms at ambient temperature does not exclusively originate from buoyant convection, but is caused by local composite effects of beam-induced motion and radiation chemistry resulting in a local change in the water T1 relaxation time.Significance. The identification of ToF angiography sequence-based proton beam visualisation in water phantoms to result from composite effects of beam-induced motion and radiation chemistry represents the starting point for the future elucidation of the currently unexplained motion-based MRI contrast mechanism and the identification of the proton beam-induced material change causing T1 relaxation time lengthening.


Assuntos
Prótons , Radioatividade , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Radioquímica
4.
Proc Natl Acad Sci U S A ; 120(23): e2301160120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252953

RESUMO

The main advantage proton beams offer over photon beams in radiation therapy of cancer patients is the dose maximum at their finite range, yielding a reduction in the dose deposited in healthy tissues surrounding the tumor. Since no direct method exists to measure the beam's range during dose delivery, safety margins around the tumor are applied, compromising the dose conformality and reducing the targeting accuracy. Here, we demonstrate that online MRI can visualize the proton beam and reveal its range during irradiation of liquid-filled phantoms. A clear dependence on beam energy and current was found. These results stimulate research into novel MRI-detectable beam signatures and already find application in the geometric quality assurance for magnetic resonance-integrated proton therapy systems currently under development.


Assuntos
Neoplasias , Terapia com Prótons , Humanos , Prótons , Terapia com Prótons/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Imageamento por Ressonância Magnética
6.
Sci Rep ; 12(1): 21488, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509788

RESUMO

Application experiments with laser plasma-based accelerators (LPA) for protons have to cope with the inherent fluctuations of the proton source. This creates a demand for non-destructive and online spectral characterization of the proton pulses, which are for application experiments mostly spectrally filtered and transported by a beamline. Here, we present a scintillator-based time-of-flight (ToF) beam monitoring system (BMS) for the recording of single-pulse proton energy spectra. The setup's capabilities are showcased by characterizing the spectral stability for the transport of LPA protons for two beamline application cases. For the two beamline settings monitored, data of 122 and 144 proton pulses collected over multiple days were evaluated, respectively. A relative energy uncertainty of 5.5% (1[Formula: see text]) is reached for the ToF BMS, allowing for a Monte-Carlo based prediction of depth dose distributions, also used for the calibration of the device. Finally, online spectral monitoring combined with the prediction of the corresponding depth dose distribution in the irradiated samples is demonstrated to enhance applicability of plasma sources in dose-critical scenarios.

7.
Radiother Oncol ; 175: 193-196, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030933

RESUMO

The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.


Assuntos
Oxigênio , Água , Humanos , Dosagem Radioterapêutica
8.
Radiother Oncol ; 173: 49-54, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661675

RESUMO

BACKGROUND AND PURPOSE: Continuing recent experiments at the research electron accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf the influence of beam pulse structure on the Flash effect was investigated. MATERIALS AND METHODS: The proton beam pulse structure of an isochronous cyclotron (UHDRiso) and a synchrocyclotron (UHDRsynchro) was mimicked at ELBE by quasi-continuous electron bunches at 13 MHz delivering mean dose rates of 287 Gy/s and 177 Gy/s and bunch dose rates of 106Gy/s and 109 Gy/s, respectively. For UHDRsynchro, 40 ms macro pulses at a frequency of 25 Hz superimposed the bunch delivery. For comparison, a maximum beam intensity (2.5 × 105 Gy/s mean and ∼109 Gy/s bunch dose rate) and a reference irradiation (of ∼8 Gy/min mean dose rate) were applied. Radiation induced changes were assessed in zebrafish embryos over four days post irradiation. RESULTS: Relative to the reference a significant protecting Flash effect was observed for all electron beam pulse regimes with less severe damage the higher the mean dose rate of the electron beam. Accordingly, the macro pulsing induced prolongation of treatment time at UHDRsynchro regime reduces the protecting effect compared to the maximum regime delivered at same bunch but higher mean dose rate. The Flash effect of the UHDRiso regime was confirmed at a clinical isochronous cyclotron comparing the damage induced by proton beams delivered at 300 Gy/s and ∼9 Gy/min. CONCLUSION: The recent findings indicate that the mean dose rate or treatment time are decisive for the normal tissue protecting Flash effect in zebrafish embryo.


Assuntos
Prótons , Peixe-Zebra , Animais , Elétrons , Dosagem Radioterapêutica
9.
Radiother Oncol ; 158: 7-12, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587970

RESUMO

BACKGROUND AND PURPOSE: In consequence of a previous study, where no protecting proton Flash effect was found for zebrafish embryos, potential reasons and requirements for inducing a Flash effect should be investigated with higher pulse dose rate and partial oxygen pressure (pO2) as relevant parameters. MATERIALS AND METHODS: The experiments were performed at the research electron accelerator ELBE, whose variable pulse structure enables dose delivery as electron Flash and quasi-continuously (reference irradiation). Zebrafish embryos were irradiated with ~26 Gy either continuously at a dose rate of ~6.7 Gy/min (reference) or by 1441 electron pulses within 111 µs at a pulse dose rate of 109 Gy/s and a mean dose rate of 105Gy/s, respectively. Using the OxyLite system to measure the pO2 a low- (pO2 ≤ 5 mmHg) and a high-pO2 group were defined on basis of the oxygen depletion kinetics in sealed embryo samples. RESULTS: A protective Flash effect was seen for most endpoints ranging from 4 % less reduction in embryo length to about 20-25% less embryos with spinal curvature and pericardial edema, relative to reference irradiation. The reduction of pO2 below atmospheric levels (148 mmHg) resulted in higher protection, which was however more pronounced in the low-pO2 group. CONCLUSION: The Flash experiment at ELBE showed that the zebrafish embryo model is appropriate for studying the radiobiological response of high dose rate irradiation. The applied high pulse dose rate was confirmed as important beam parameter as well as the pivotal role of pO2 during irradiation.


Assuntos
Elétrons , Peixe-Zebra , Animais , Oxigênio , Prótons
10.
Anticancer Res ; 40(11): 6123-6135, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33109550

RESUMO

BACKGROUND/AIM: The importance of hadron therapy in the cancer management is growing. We aimed to refine the biological effect detection using a vertebrate model. MATERIALS AND METHODS: Embryos at 24 and 72 h postfertilization were irradiated at the entrance plateau and the mid spread-out Bragg peak of a 150 MeV proton beam and with reference photons. Radiation-induced DNA double-strand breaks (DSB) and histopathological changes of the eye, muscles and brain were evaluated; deterioration of specific organs (eye, yolk sac, body) was measured. RESULTS: More and longer-lasting DSBs occurred in eye and muscle cells due to proton versus photon beams, albeit in different numbers. Edema, necrosis and tissue disorganization, (especially in the eye) were observed. Dose-dependent morphological deteriorations were detected at ≥10 Gy dose levels, with relative biological effectiveness between 0.99±0.07 (length) and 1.12±0.19 (eye). CONCLUSION: Quantitative assessment of radiation induced changes in zebrafish embryos proved to be beneficial for the radiobiological characterization of proton beams.


Assuntos
Fótons , Prótons , Peixe-Zebra/fisiologia , Animais , Encéfalo/efeitos da radiação , Dano ao DNA , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Embrião não Mamífero/efeitos da radiação , Olho/patologia , Olho/efeitos da radiação , Cinética , Tamanho do Órgão/efeitos da radiação , Eficiência Biológica Relativa , Saco Vitelino/patologia , Saco Vitelino/efeitos da radiação , Peixe-Zebra/embriologia
12.
Sci Rep ; 10(1): 9118, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499539

RESUMO

Intense laser-driven proton pulses, inherently broadband and highly divergent, pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for 3D. Here we experimentally show the successful implementation of a highly efficient (50% transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous (laterally and in depth) volumetric dose distribution (cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7 Gy via multi-energy slice selection from the broad input spectrum. The experiments were conducted at the Petawatt beam of the Dresden Laser Acceleration Source Draco and were aided by a predictive simulation model verified by proton transport studies. With the characterised beamline we investigated manipulation and matching of lateral and depth dose profiles to various desired applications and targets. Using an adapted dose profile, we performed a first proof-of-technical-concept laser-driven proton irradiation of volumetric in-vitro tumour tissue (SAS spheroids) to demonstrate concurrent operation of laser accelerator, beam shaping, dosimetry and irradiation procedure of volumetric biological samples.

13.
Cancers (Basel) ; 11(9)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480456

RESUMO

The development of new radiotherapy technologies is a long-term process, which requires proof of the general concept. However, clinical requirements with respect to beam quality and controlled dose delivery may not yet be fulfilled. Exemplarily, the necessary radiobiological experiments with laser-accelerated electrons are challenged by fluctuating beam intensities. Based on tumour-growth data and dose values obtained in an in vivo trial comparing the biological efficacy of laser-driven and conventional clinical Linac electrons, different statistical approaches for analysis were compared. In addition to the classical averaging per dose point, which excludes animals with high dose deviations, multivariable linear regression, Cox regression and a Monte-Carlo-based approach were tested as alternatives that include all animals in statistical analysis. The four methods were compared based on experimental and simulated data. All applied statistical approaches revealed a comparable radiobiological efficacy of laser-driven and conventional Linac electrons, confirming the experimental conclusion. In the simulation study, significant differences in dose response were detected by all methods except for the conventional method, which showed the lowest power. Thereby, the alternative statistical approaches may allow for reducing the total number of required animals in future pre-clinical trials.

14.
Radiother Oncol ; 139: 46-50, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266652

RESUMO

BACKGROUND AND PURPOSE: Motivated by first animal trials showing the normal tissue protecting effect of electron and photon Flash irradiation, i.e. at mean dose rates of 100 Gy/s and higher, relative to conventional beam delivery over minutes the feasibility of proton Flash should be assessed. MATERIALS AND METHODS: A setup and beam parameter settings for the treatment of zebrafish embryo with proton Flash and proton beams of conventional dose rate were established at the University Proton Therapy Dresden. Zebrafish embryos were treated with graded doses and the differential effect on embryonic survival and the induction of morphological malformations was followed for up to four days after irradiation. RESULTS: Beam parameters for the realization of proton Flash were set and tested with respect to controlled dose delivery to biological samples. Analyzing the dose dependent embryonic survival and the rate of spinal curvature as one type of developmental abnormality, no significant influence of proton dose rate was revealed. For the rate of pericardial edema as acute radiation effect, a significant difference (p < 0.05) between proton Flash and protons delivered at conventional dose rate of 5 Gy/min was observed for one dose point only. CONCLUSION: The feasibility of Flash proton irradiation was successfully shown, whereas more experiments are required to confirm the presence or absence of a protecting effect and to figure out the limits and requirements for the Flash effect.


Assuntos
Embrião não Mamífero/efeitos da radiação , Terapia com Prótons/métodos , Animais , Estudos de Viabilidade , Dosagem Radioterapêutica , Peixe-Zebra/embriologia
15.
PLoS One ; 13(11): e0206879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408095

RESUMO

The increasing use of proton radiotherapy during the last decade and the rising number of long-term survivors has given rise to a vital discussion on potential effects on normal tissue. So far, deviations from clinically applied generic RBE (relative biological effectiveness) of 1.1 were only obtained by in vitro studies, whereas indications from in vivo trials and clinical studies are rare. In the present work, wildtype zebrafish embryos (Danio rerio) were used to characterize the effects of plateau and mid-SOBP (spread-out Bragg peak) proton radiation relative to that induced by clinical MV photon beam reference. Based on embryonic survival data, RBE values of 1.13 ± 0.08 and of 1.20 ± 0.04 were determined four days after irradiations with 20 Gy plateau and SOBP protons relative to 6 MV photon beams. These RBE values were confirmed by relating the rates of embryos with morphological abnormalities for the respective radiation qualities and doses. Besides survival, the rate of spine bending, as one type of developmental abnormality, and of pericardial edema, as an example for acute radiation effects, were assessed. The results revealed that independent on radiation quality both rates increased with time approaching almost 100% at the 4th day post irradiation with doses higher than 15 Gy. To sum up, the applicability of the zebrafish embryo as a robust and simple alternative model for in vivo characterization of radiobiological effects in normal tissue was validated and the obtained RBE values are comparable to previous finding in animal trials.


Assuntos
Embrião não Mamífero/efeitos da radiação , Terapia com Prótons/efeitos adversos , Prótons/efeitos adversos , Eficiência Biológica Relativa , Animais , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Peixe-Zebra
16.
Phys Med Biol ; 63(23): 23LT01, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30465549

RESUMO

On-line image guidance using magnetic resonance (MR) imaging is expected to improve the targeting accuracy of proton therapy. However, to date no combined system exists. In this study, for the first time a low-field open MR scanner was integrated with a static proton research beam line to test the feasibility of simultaneous irradiation and imaging. The field-of-view of the MR scanner was aligned with the beam by taking into account the Lorentz force induced beam deflection. Various imaging sequences for extremities were performed on a healthy volunteer and on a patient with a soft-tissue sarcoma of the upper arm, both with the proton beam line switched off. T 1-weighted spin echo images of a tissue-mimicking phantom were acquired without beam, with energised beam line magnets and during proton irradiation. Beam profiles were acquired for the MR scanner's static magnetic field alone and in combination with the dynamic gradient fields during the acquisition of different imaging sequences. It was shown that MR imaging is feasible in the electromagnetically contaminated environment of a proton therapy facility. The observed quality of the anatomical MR images was rated to be sufficient for target volume definition and positioning. The tissue-mimicking phantom showed no visible beam-induced image degradation. The beam profiles depicted no influence due to the dynamic gradient fields of the imaging sequences. This study proves that simultaneous irradiation and in-beam MR imaging is technically feasible with a low-field MR scanner integrated with a static proton research beam line.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Terapia com Prótons/métodos , Sarcoma/radioterapia , Voluntários Saudáveis , Humanos , Joelho/efeitos da radiação , Sarcoma/patologia
17.
Int J Part Ther ; 5(1): 172-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31773028

RESUMO

PURPOSE: In order to take full advantage of proton radiotherapy, the biological effect of protons in normal and tumor tissue should be investigated and understood in detail. The ongoing discussion on variable relative biological effectiveness along the proton depth dose distribution (eg, Paganetti 2015), and also the administration of concomitant treatments, demands dedicated in vitro trials that prepare the translation into the clinics. Therefore, a setup for radiobiological studies and the corresponding dosimetry should be established that enables in vitro experiments at a horizontal proton beam and a clinical 6 MV photon linear accelerator (Linac) as reference. METHODS: The experimental proton beam at the University Proton Therapy Dresden is characterized by high beam availability and reliability throughout the day in parallel to patient treatment. For cell irradiation, a homogeneous 10 × 10 cm2 proton field with an optional spread-out Bragg-peak can be formed. A water-filled phantom was installed that allows for precise positioning of different sample geometries along the proton path. RESULTS: Depth-dose profiles within the phantom and dose homogeneity over different cell samples were characterized for the proton beam and the photon reference source. A daily quality assurance protocol was implemented that provides absolute dose information required for significant and reproducible in vitro experiments. Cell survival test experiments were performed to demonstrate the feasibility of such experiments. CONCLUSION: In the experimental room of the University Proton Therapy Dresden, clinically relevant conditions for proton in vitro experiments have been realized. The established cell phantom and dosimetry facilitate irradiation in an aqueous environment and are transferable to other proton, photon and ion beam facilities. Precise positioning and easy exchange of cell samples, monitor unit-based dose delivery, and high beam availability allow for systematic in vitro experiments. The close vicinity to the radiotherapy and radiobiology departments provides access to clinical linacs and the interdisciplinary basis for further translational steps.

18.
Acta Oncol ; 56(11): 1359-1366, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28828925

RESUMO

Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.


Assuntos
Radioterapia com Íons Pesados/instrumentação , Íons/uso terapêutico , Lasers , Neoplasias/radioterapia , Aceleradores de Partículas , Humanos
19.
Med Phys ; 43(11): 6154, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27806601

RESUMO

PURPOSE: Gas-filled ionization chambers are the most important radiation detectors in radiotherapy. The collected charge at the electrodes does not represent the total released charge due to the unavoidable recombination processes. This needs to be considered for precise dose measurements. A quantitative description and correction of the recombination effects is established for two cases: continuous radiation exposure and pulsed radiation fields of single pulses with vanishing pulse duration. This work derives formulas for calculating the saturation correction for pulsed beams of nonvanishing pulse duration. METHODS: Recursive formulas are derived describing the spatio-temporal development of the charge density distributions in plane-parallel ionization chambers starting at neglected recombination. Pulse duration dependent effective chamber parameters are calculated, by comparing the coefficients of a series expansion for small recombination effects. These parameters are used afterward in the known formula for the saturation correction factor for pulsed irradiation with increased recombination effects which was established with the assumption of vanishing pulse duration. RESULTS: The formulas should be valid for pulse durations shorter than half the collection time of the chamber. They allow calculating the saturation correction factor for pulsed beams of nonvanishing pulse duration and arbitrary pulse dose, if chamber, beam, and filling gas parameters are known. The filling gas parameters could be determined from experimental data. The calculation results are in good agreement with already published experimental and simulated results for a Roos chamber. CONCLUSIONS: The new formulas can be applied to determine the expected saturation correction for pulsed beams of different pulse duration and pulse dose including new beams at accelerators of new technologies. More experimental validation by using other chambers and an extension of the new formalism to pulse durations longer than half the collection time of the chamber is desired.


Assuntos
Radiometria/instrumentação , Análise Espaço-Temporal
20.
Radiat Environ Biophys ; 55(3): 381-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193178

RESUMO

Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.


Assuntos
Elétrons , Lasers , Aceleradores de Partículas , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Doses de Radiação , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA