Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(8): 104719, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35813877

RESUMO

Poor immunogenicity of critical epitopes can hamper vaccine efficacy. To boost immune recognition of non- or low-immunogenic antigens, we developed a vaccine platform based on the conjugation of a target protein to a chimeric designer peptide (CDP) of bacterial origin. Here, we exploited this immune Boost (iBoost) technology to enhance the immune response against the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. Despite its fundamental role during viral infection, RBD is only moderately immunogenic. Immunization studies in mice showed that the conjugation of CDP to RBD induced superior immune responses compared to RBD alone. CDP-RBD elicited cross-reactive antibodies against the variants of concern Delta and Omicron. Furthermore, hamsters vaccinated with CDP-RBD developed potent neutralizing antibody responses and were fully protected from lung lesion formation upon challenge with SARS-CoV-2. In sum, we show that the iBoost conjugate vaccine technology provides a valuable tool for both quantitatively and qualitatively enhancing anti-viral immunity.

2.
Inflamm Regen ; 37: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259701

RESUMO

BACKGROUND: Pericytes, surrounding the endothelium, fulfill diverse functions that are crucial for vascular homeostasis. The loss of pericytes is associated with pathologies, such as diabetic retinopathy and Alzheimer's disease. Thus, there exists a need for an experimental system that combines pharmacologic manipulation and quantification of pericyte coverage during sprouting angiogenesis. Here, we describe an in vitro angiogenesis assay that develops lumenized vascular sprouts composed of endothelial cells enveloped by pericytes, with the additional ability to comparatively screen the effect of multiple small molecules simultaneously. For automated analysis, we also present an ImageJ plugin tool we developed to quantify sprout morphology and pericyte coverage. METHODS: Human umbilical vein endothelial cells and human brain vascular pericytes were coated on microcarrier beads and embedded in fibrin gels in a 96-well plate to form lumenized vascular sprouts. After treatment with pharmacologic compounds, sprouts were fixed, stained, and imaged via optical z-sections over the area of each well. The maximum intensity projections of these images were stitched together to form montages of the wells, and those montages were processed and analyzed. RESULTS: Vascular sprouts formed within 4-12 days and contained a patent lumen surrounded by a layer of human endothelial cells and pericytes. Using our workflow and image analysis, pericyte coverage after treatment with various compounds was successfully quantified. CONCLUSIONS: Here we present a robust in vitro assay using primary human vascular cells that allows researchers to analyze the effects of multiple compounds on sprouting angiogenesis and pericyte coverage. Our ImageJ plugin offers automated evaluation across multiple different vascular parameters, such as sprout length, cell density, branch points, and pericyte coverage.

3.
Nat Commun ; 7: 13560, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995929

RESUMO

An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor 'empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue.


Assuntos
Epitélio/irrigação sanguínea , Epitélio/fisiologia , Ilhotas Pancreáticas/irrigação sanguínea , Proteínas Serina-Treonina Quinases/fisiologia , Actomiosina/fisiologia , Animais , Membrana Basal/fisiologia , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células Epiteliais/fisiologia , Feminino , Intolerância à Glucose/fisiopatologia , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA