Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Invest Radiol ; 58(5): 346-354, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729536

RESUMO

OBJECTIVES: The UK Biobank (UKBB) and German National Cohort (NAKO) are among the largest cohort studies, capturing a wide range of health-related data from the general population, including comprehensive magnetic resonance imaging (MRI) examinations. The purpose of this study was to demonstrate how MRI data from these large-scale studies can be jointly analyzed and to derive comprehensive quantitative image-based phenotypes across the general adult population. MATERIALS AND METHODS: Image-derived features of abdominal organs (volumes of liver, spleen, kidneys, and pancreas; volumes of kidney hilum adipose tissue; and fat fractions of liver and pancreas) were extracted from T1-weighted Dixon MRI data of 17,996 participants of UKBB and NAKO based on quality-controlled deep learning generated organ segmentations. To enable valid cross-study analysis, we first analyzed the data generating process using methods of causal discovery. We subsequently harmonized data from UKBB and NAKO using the ComBat approach for batch effect correction. We finally performed quantile regression on harmonized data across studies providing quantitative models for the variation of image-derived features stratified for sex and dependent on age, height, and weight. RESULTS: Data from 8791 UKBB participants (49.9% female; age, 63 ± 7.5 years) and 9205 NAKO participants (49.1% female, age: 51.8 ± 11.4 years) were analyzed. Analysis of the data generating process revealed direct effects of age, sex, height, weight, and the data source (UKBB vs NAKO) on image-derived features. Correction of data source-related effects resulted in markedly improved alignment of image-derived features between UKBB and NAKO. Cross-study analysis on harmonized data revealed comprehensive quantitative models for the phenotypic variation of abdominal organs across the general adult population. CONCLUSIONS: Cross-study analysis of MRI data from UKBB and NAKO as proposed in this work can be helpful for future joint data analyses across cohorts linking genetic, environmental, and behavioral risk factors to MRI-derived phenotypes and provide reference values for clinical diagnostics.


Assuntos
Bancos de Espécimes Biológicos , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Estudos de Coortes , Abdome/diagnóstico por imagem , Reino Unido
3.
Sci Rep ; 12(1): 18733, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333523

RESUMO

Large epidemiological studies such as the UK Biobank (UKBB) or German National Cohort (NAKO) provide unprecedented health-related data of the general population aiming to better understand determinants of health and disease. As part of these studies, Magnetic Resonance Imaging (MRI) is performed in a subset of participants allowing for phenotypical and functional characterization of different organ systems. Due to the large amount of imaging data, automated image analysis is required, which can be performed using deep learning methods, e. g. for automated organ segmentation. In this paper we describe a computational pipeline for automated segmentation of abdominal organs on MRI data from 20,000 participants of UKBB and NAKO and provide results of the quality control process. We found that approx. 90% of data sets showed no relevant segmentation errors while relevant errors occurred in a varying proportion of data sets depending on the organ of interest. Image-derived features based on automated organ segmentations showed relevant deviations of varying degree in the presence of segmentation errors. These results show that large-scale, deep learning-based abdominal organ segmentation on MRI data is feasible with overall high accuracy, but visual quality control remains an important step ensuring the validity of down-stream analyses in large epidemiological imaging studies.


Assuntos
Bancos de Espécimes Biológicos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Controle de Qualidade , Reino Unido
4.
IEEE Trans Med Imaging ; 41(7): 1837-1848, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35139014

RESUMO

Fully-supervised deep learning segmentation models are inflexible when encountering new unseen semantic classes and their fine-tuning often requires significant amounts of annotated data. Few-shot semantic segmentation (FSS) aims to solve this inflexibility by learning to segment an arbitrary unseen semantically meaningful class by referring to only a few labeled examples, without involving fine-tuning. State-of-the-art FSS methods are typically designed for segmenting natural images and rely on abundant annotated data of training classes to learn image representations that generalize well to unseen testing classes. However, such a training mechanism is impractical in annotation-scarce medical imaging scenarios. To address this challenge, in this work, we propose a novel self-supervised FSS framework for medical images, named SSL-ALPNet, in order to bypass the requirement for annotations during training. The proposed method exploits superpixel-based pseudo-labels to provide supervision signals. In addition, we propose a simple yet effective adaptive local prototype pooling module which is plugged into the prototype networks to further boost segmentation accuracy. We demonstrate the general applicability of the proposed approach using three different tasks: organ segmentation of abdominal CT and MRI images respectively, and cardiac segmentation of MRI images. The proposed method yields higher Dice scores than conventional FSS methods which require manual annotations for training in our experiments.


Assuntos
Imageamento por Ressonância Magnética , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
5.
Invest Radiol ; 56(6): 401-408, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930003

RESUMO

PURPOSE: The aims of this study were to train and evaluate deep learning models for automated segmentation of abdominal organs in whole-body magnetic resonance (MR) images from the UK Biobank (UKBB) and German National Cohort (GNC) MR imaging studies and to make these models available to the scientific community for analysis of these data sets. METHODS: A total of 200 T1-weighted MR image data sets of healthy volunteers each from UKBB and GNC (400 data sets in total) were available in this study. Liver, spleen, left and right kidney, and pancreas were segmented manually on all 400 data sets, providing labeled ground truth data for training of a previously described U-Net-based deep learning framework for automated medical image segmentation (nnU-Net). The trained models were tested on all data sets using a 4-fold cross-validation scheme. Qualitative analysis of automated segmentation results was performed visually; performance metrics between automated and manual segmentation results were computed for quantitative analysis. In addition, interobserver segmentation variability between 2 human readers was assessed on a subset of the data. RESULTS: Automated abdominal organ segmentation was performed with high qualitative and quantitative accuracy on UKBB and GNC data. In more than 90% of data sets, no or only minor visually detectable qualitative segmentation errors occurred. Mean Dice scores of automated segmentations compared with manual reference segmentations were well higher than 0.9 for the liver, spleen, and kidneys on UKBB and GNC data and around 0.82 and 0.89 for the pancreas on UKBB and GNC data, respectively. Mean average symmetric surface distance was between 0.3 and 1.5 mm for the liver, spleen, and kidneys and between 2 and 2.2 mm for pancreas segmentation. The quantitative accuracy of automated segmentation was comparable with the agreement between 2 human readers for all organs on UKBB and GNC data. CONCLUSION: Automated segmentation of abdominal organs is possible with high qualitative and quantitative accuracy on whole-body MR imaging data acquired as part of UKBB and GNC. The results obtained and deep learning models trained in this study can be used as a foundation for automated analysis of thousands of MR data sets of UKBB and GNC and thus contribute to tackling topical and original scientific questions.


Assuntos
Aprendizado Profundo , Bancos de Espécimes Biológicos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Reino Unido
6.
Appl Opt ; 53(35): 8175-81, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25608057

RESUMO

A fiber optic Lloyd's mirror assembly is used to obtain various optical interference patterns for the detection of 3D rigid body shapes. Two types of fiber optic Lloyd's systems are used in this work. The first consists of a single-mode optical fiber and a highly reflecting flat mirror to produce bright and dark strips. The second is constructed by locating a single-mode optical fiber in a v-groove, which is formed by two orthogonal flat mirrors to allow the generation of square-type interference patterns for the desired applications. The structured light patterns formed by these two fiber Lloyd's techniques are projected onto 3D objects. Fringe patterns are deformed due to the object's surface topography, which are captured by a digital CCD camera and processed with a Fourier transform technique to accomplish 3D surface topography of the object. It is demonstrated that the fiber-optic Lloyd's technique proposed in this work is more compact, more stable, and easier to configure than other existing surface profilometry systems, since it does not include any high-cost optical tools such as aligners, couplers, or 3D stages. The fringe patterns are observed to be more robust against environmental disturbances such as ambient temperature and vibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA