RESUMO
In the relentless pursuit of optimizing drug development, the intricate process of determining the ideal dosage unfolds. This involves "dose-finding" studies, crucial for providing insights into subsequent registration trials. However, the challenges intensify when tackling rare diseases. The complexity arises from poorly understood pathophysiologies, scarcity of appropriate animal models, and limited natural history understanding. The inherent heterogeneity, coupled with challenges in defining clinical end points, poses substantial challenges, hindering the utility of available data. The small affected population, low disease awareness, and restricted healthcare access compound the difficulty in conducting dose-finding studies. This white paper delves into critical dose selection aspects, focusing on key therapeutic areas, such as oncology, neurology, hepatology, metabolic rare diseases. It also explores dose selection challenges posed by pediatric rare diseases as well as novel modalities, including enzyme replacement therapies, cell and gene therapies, and oligonucleotides. Several examples emphasize the pivotal role of clinical pharmacology in navigating the complexities associated with these diseases and emerging treatment modalities.
RESUMO
N-acetylcysteine (NAC), a precursor of cysteine and, thereby, glutathione (GSH), acts as an antioxidant through a variety of mechanisms, including oxidant scavenging, GSH replenishment, antioxidant signaling, etc. Owing to the variety of proposed targets, NAC has a long history of use as a prescription product and in wide-ranging applications that are off-label as an over-the-counter (OTC) product. Despite its discovery in the early 1960s and its development for various indications, systematic clinical pharmacology explorations of NAC pharmacokinetics (PK), pharmacodynamic targets, drug interactions, and dose-ranging are sorely limited. Although there are anecdotal instances of NAC benefits in a variety of diseases, a comprehensive review of the use of NAC in rare diseases does not exist. In this review, we attempt to summarize the existing literature focused on NAC explorations in rare diseases targeting mitochondrial dysfunction along with the history of NAC usage, approved indications, mechanisms of action, safety, and PK characterization. Further, we introduce the research currently underway on other structural derivatives of NAC and acknowledge the continuum of efforts through pre-clinical and clinical research to facilitate further therapeutic development of NAC or its derivatives for rare diseases.
RESUMO
Eliglustat is a glucosylceramide synthase inhibitor indicated as a long-term substrate reduction therapy for adults with type 1 Gaucher disease, a lysosomal rare disease. It is primarily metabolized by cytochrome P450 2D6 (CYP2D6), and variants in the gene encoding this enzyme are important determinants of eliglustat pharmacokinetics (PK) and drug-drug interactions (DDIs). The existing drug label addresses the DDIs to some extent but has omitted scenarios where both metabolizing CYPs (2D6 and 3A4) are mildly or moderately inhibited. The objectives of this study were (i) to develop and validate an eliglustat physiologically-based pharmacokinetic (PBPK) model with and without drug interactions, (ii) to simulate untested DDI scenarios, and (iii) to explore potential dosing flexibility using lower dose strength of eliglustat (commercially not available). PK data from healthy adults receiving eliglustat with or without interacting drugs were obtained from literature and used for the PBPK model development and validation. The model-predicted single-dose and steady-state maximum concentration (Cmax ) and area under the concentration-time curve (AUC) of eliglustat were within 50-150% of the observed values when eliglustat was administered alone or coadministered with ketoconazole or paroxetine. Then as model-based simulations, we illustrated eliglustat exposure as a victim of interaction when coadministered with fluvoxamine following the US Food and Drug Administration (FDA) dosing recommendations. Second, we showed that with lower eliglustat doses (21 mg, 42 mg once daily) the exposure in participants of intermediate and poor metabolizer phenotypes was within the outlined safety margin (Cmax <250 ng/mL) when eliglustat was administered with ketoconazole, where the current recommendation is a contraindication of coadministration (84 mg). The present study demonstrated that patients with CYP2D6 deficiency may benefit from lower doses of eliglustat.
Assuntos
Citocromo P-450 CYP2D6 , Cetoconazol , Estados Unidos , Citocromo P-450 CYP2D6/genética , Interações Medicamentosas , PirrolidinasRESUMO
The lack of reliable biomarkers is a significant challenge impeding progress in orphan drug development. For appropriate interpretation of intervention-based results or for evaluating candidate biomarkers, other things being equal, lower variability in biomarker measurement would be helpful. However, variability in rare disease biomarkers is often poorly understood. Type 1 Gaucher disease (GD1) is one such rare lysosomal storage disorder. Oxidative stress and inflammation have been linked to the pathophysiology of GD1 and validated measures of these processes can provide predictive value for treatment success or disease progression. This study was undertaken to investigate and compare the extent of longitudinal biological variation over a three-month period for various blood-based oxidative stress and inflammation markers in participants with GD1 on stable standard-of-care therapy (N = 13), treatment-naïve participants with GD1 (N = 5), and in age- and gender-matched healthy volunteers (N = 18). We utilized Bland-Altman plots for visual comparison of the biological variability among the three measurements. We also report group-wise means and the percentage of coefficient of variation (%CV) for 15 biomarkers. Qualitatively, we show specific markers (IL-1Ra, IL-8, and MIP-1b) to be consistently altered in GD1, irrespective of therapy status, highlighting the need for adjunctive therapies that can target and modulate these biomarkers. This information can help guide the selection of candidate biomarkers for future intervention-based studies in GD1 patients.
Assuntos
Doença de Gaucher , Biomarcadores/metabolismo , Progressão da Doença , Doença de Gaucher/tratamento farmacológico , Humanos , Inflamação , Estresse OxidativoRESUMO
Adrenoleukodystrophy (ALD) is an X-linked inherited peroxisomal disorder due to mutations in the ALD protein and characterized by accumulation of very long-chain fatty acids (VLCFA), specifically hexacosanoic acid (C26:0). This can trigger other pathological processes such as mitochondrial dysfunction, oxidative stress, and inflammation, which if involves the brain tissues can result in a lethal form of the disease called childhood cerebral ALD. With the recent addition of ALD to the Recommended Uniform Screening Panel, there is an increase in the number of individuals who are identified with ALD. However, currently, there is no approved treatment for pre-symptomatic individuals that can arrest or delay symptom development. Here, we report our observations investigating nervonic acid, a monounsaturated fatty acid as a potential therapy for ALD. Using ALD patient-derived fibroblasts, we examined whether nervonic acid can reverse VLCFA accumulation similar to erucic acid, the active ingredient in Lorenzo's oil, a dietary intervention believed to alter disease course. We have shown that nervonic acid can reverse total lipid C26:0 accumulation in a concentration-dependent manner in ALD cell lines. Further, we show that nervonic acid can protect ALD fibroblasts from oxidative insults, presumably by increasing intracellular ATP production. Thus, nervonic acid can be a potential therapeutic for individuals with ALD, which can alter cellular biochemistry and improve its function.
Assuntos
Adrenoleucodistrofia , Adrenoleucodistrofia/tratamento farmacológico , Criança , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/uso terapêutico , Fibroblastos , HumanosRESUMO
Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by mutations in the gene, GBA1, that leads to defective glucocerebrosidase activity resulting in the accumulation and storage of glycosphingolipids. However, the pathophysiology of GD is more complicated leading to various associated conditions such as skeletal manifestations and Parkinson's disease (PD). These may result from oxidative stress and inflammatory responses due to complex interconnection of downstream factors such as substrate accumulation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR), calcium dysregulation, mitochondrial dysfunction, defective autophagy, accumulation of α-synuclein aggregates, altered secretion and function of extracellular vesicles (EVs), and immunologic hyperactivity. Here we provide an overview of lysosomal storage diseases followed by a comprehensive review of the factors contributing to oxidative stress and inflammation in GD pathophysiology, mechanisms underlying the possible associated complications, current established treatments for GD, their limitations, and potential primary and adjunctive treatment options targeting these factors.
Assuntos
Doença de Gaucher , Doença de Parkinson , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Lipídeos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismoRESUMO
The inaugural IndoUSrare Annual Conference was held virtually from 29 November to 2 December 2021 and was organized by the Indo US Organization for Rare Diseases (IndoUSrare). The event saw participation from over 250 stakeholders of rare diseases who joined in virtually by audio/video on the Zoom platform from around the world, with a majority of attendees concentrated in the Indian subcontinent and the United States. The conference was held over 4 days from 10:00 a.m. to 12:30 p.m. Eastern Time on each day, which accommodated participation by speakers and attendees from both the eastern and western hemispheres. The agenda over 4 days holistically covered broad topics of interest to different stakeholder groups such as representatives from organizations working toward policy frameworks for rare diseases or orphan drugs (Days 1, 4), biomedical research institutions (Day 2), patient advocacy organizations (Day 3), and patient advocacy and engagement offices within Industry (Day 4). In this meeting report, we summarize the key highlights from each day of this conference, with a perspective on future directions encouraging cross-border multistakeholder collaborations to maximize diversity, equity, and inclusion (DEI) in rare disease diagnosis, research, clinical trials, and treatment access. Each day included a keynote lecture on the theme of the day followed by a series of individual speaker presentations and/or a panel discussion. The goal was to understand current barriers and bottlenecks in the rare disease ecosystem. The discussions also helped highlight gaps and identify potential solutions that can be achieved through building multistakeholder collaborations across international borders, which we believe IndoUSrare is uniquely positioned to do with organizational programs such as rare patient foundation alliance, technology-enabled patient concierge, research corps, and corporate alliance program. The inaugural conference of the then 2+-year-old IndoUSrare organization laid the foundation for ongoing engagement of stakeholders between the two countries - the United States and India. The long-term goal is to scale the conference more broadly and serve as a model for other low- and middle-income countries (LMICs). Plain language summary: IndoUSrare held its inaugural Annual Conference from 29 November to 2 December 2021. It was focused on the theme of cross-border collaborations for rare disease drug development, with each day dedicated to a specific patient-focused discussion topic, ranging from patient-led advocacy (Advocacy Day), research (Research Day), rare disease community support and engagement (Patients Alliance Day), to industry collaborations (Industry Day). The 4-day conference was held in virtual mode and attracted over 250 attendees from across the globe. This meeting report provides the key highlights of the event and summarizes learnings and future directions encouraging cross-border collaborations to increase diversity, equity, and inclusion (DEI) in rare disease research and clinical trials.
RESUMO
X-linked adrenoleukodystrophy (X-ALD) is an inherited, neurodegenerative rare disease that can result in devastating symptoms of blindness, gait disturbances and spastic quadriparesis due to progressive demyelination. Typically, the disease progresses rapidly, causing death within the first decade of life. With limited treatments available, efforts to determine an effective therapy that can alter disease progression or mitigate symptoms have been undertaken for many years, particularly through drug repurposing. Repurposing has generally been guided through clinical experience and small trials. At this time, none of the drug candidates have been approved for use, which may be due, in part, to the lack of pharmacokinetic/pharmacodynamic information on the repurposed medications in the target patient population. Greater consideration for the disease pathophysiology, drug pharmacology and potential drug-target interactions, specifically at the site of action, would improve drug repurposing and facilitate drug development. Incorporating advanced translational and clinical pharmacological approaches in preclinical studies and early-stage clinical trials will improve the success of repurposed drugs for X-ALD as well as other rare diseases.
Assuntos
Adrenoleucodistrofia , Farmacologia Clínica , Adrenoleucodistrofia/tratamento farmacológico , Progressão da Doença , Reposicionamento de Medicamentos , Humanos , Doenças Raras/tratamento farmacológicoRESUMO
The accumulation of saturated very long-chain fatty acids (VLCFA, ≥C22:0) due to peroxisomal impairment leads to oxidative stress and neurodegeneration in X-linked adrenoleukodystrophy (ALD). Among the neural supporting cells, myelin-producing oligodendrocytes are the most sensitive to the detrimental effect of VLCFA. Here, we characterized the mitochondrial dysfunction and cell death induced by VLFCA, and examined whether N-acetylcysteine (NAC), an antioxidant, prevents the cytotoxicity. We exposed murine oligodendrocytes (158 N) to hexacosanoic acid (C26:0, 1-100 µM) for 24 h and measured reactive oxygen species (ROS) and cell death. Low concentrations of C26:0 (≤25 µM) induced a mild effect on cell survival with no alterations in ROS or total glutathione (GSH) concentrations. However, analysis of the mitochondrial status of cells treated with C26:0 (25 µM) revealed depletion in mitochondrial GSH (mtGSH) and a decrease in the inner membrane potential. These results indicate that VLCFA disturbs the mitochondrial membrane potential causing ROS accumulation, oxidative stress, and cell death. We further tested whether NAC (500 µM) can prevent the mitochondria-specific effects of VLCFA in C26:0-treated oligodendrocytes. Our results demonstrate that NAC improves mtGSH levels and mitochondrial function in oligodendrocytes, indicating that it has potential use in the treatment of ALD and related disorders.
RESUMO
BACKGROUND: Extremely rare progressive diseases like Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) can be neonatally lethal and therefore go undiagnosed or are difficult to treat. Recent sequencing efforts have linked this disease to mutations in GPX4, with consequences in the resulting enzyme, glutathione peroxidase 4. This offers potential diagnostic and therapeutic avenues for those suffering from this disease, though the steps toward these treatments is often convoluted, expensive, and time-consuming. MAIN BODY: The CureGPX4 organization was developed to promote awareness of GPX4-related diseases like SSMD, as well as support research that could lead to essential therapeutics for patients. We provide an overview of the 21 published SSMD cases and have compiled additional sequencing data for four previously unpublished individuals to illustrate the genetic component of SSMD, and the role of sequencing data in diagnosis. We outline in detail the steps CureGPX4 has taken to reach milestones of team creation, disease understanding, drug repurposing, and design of future studies. CONCLUSION: The primary aim of this review is to provide a roadmap for therapy development for rare, ultra-rare, and difficult to diagnose diseases, as well as increase awareness of the genetic component of SSMD. This work will offer a better understanding of GPx4-related diseases, and help guide researchers, clinicians, and patients interested in other rare diseases find a path towards treatments.
Assuntos
Osteocondrodisplasias , Doenças Raras , Humanos , Doenças Raras/genéticaRESUMO
N-acetylcysteine (NAC) has been used in patients with cerebral adrenoleukodystrophy as an antioxidant agent in association with hematopoietic stem cell transplant (HSCT). However, an understanding of the pharmacokinetic characteristics of intravenous NAC dosing in these patients is limited. If and how NAC pharmacokinetics change following the transplant is unknown. Toward that end, a total of 260 blood samples obtained from 18 pediatric patients with inherited metabolic disorders who underwent HSCT were included in a population pharmacokinetic analysis using nonlinear mixed-effects modeling. NAC clearance (CL) and volume of distribution (V) were explored on 3 occasions: -7, +7, and +21 days relative to transplant. Additionally, the effect of transplant procedure on NAC disposition was explored by accounting for between-occasion variability. The covariate OCC was modeled as a fixed-effect parameter on CL and/or V1. A 2-compartment model adequately described the pharmacokinetics of total NAC. Weight-based allometric scaling on pharmacokinetic parameters was assumed using standard coefficients. Estimates for CL, central (V1), and peripheral volume (V2), and intercompartment clearance were 14.7 L/h, 23.2 L, 17.1 L, 3.99 L/h, respectively, for a 70-kg person. The data only supported between-subject variability in CL (12%) and V1 (41%). Residual variability was estimated to be 16%. HSCT did not change CL and V1 significantly, and analysis across occasions did not reveal any trends. Pharmacokinetic parameter estimates were in general comparable to those reported previously in different populations. These results suggest that dosing of NAC does not need to be altered following HSCT.
Assuntos
Acetilcisteína/farmacocinética , Transplante de Células-Tronco Hematopoéticas , Erros Inatos do Metabolismo/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Meia-Vida , Humanos , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Estudos Prospectivos , Fatores de Tempo , Adulto JovemRESUMO
The prevalence of non-suicidal self-injury (NSSI) is high in adolescents and young adults. However, there is a paucity of evidence-based treatments to address this clinical problem. An open-label, pilot study in the target population showed that treatment with oral N-acetylcysteine (NAC), a widely available dietary supplement, was associated with reduction in NSSI frequency. In preparation for a biologically informed design of an efficacy trial, a critical preliminary step is to clarify NAC's biological signatures, or measures of the mechanisms underlying its clinical effects. Toward that end, we propose a 2-stage project to investigate NAC's biological signatures (changes in glutathione (GSH) and/or glutamate (Glu)) in women with NSSI. The first stage; a double-blind randomized placebo-controlled study will focus on identifying the optimal dose to achieve meaningful change in GSH and Glu during short-term (4 weeks) NAC treatment in 36 women aged 16-24 years with NSSI. Go/No-go criteria to determine if the study will progress to the second stage include pre-specified changes in brain and blood measures of GSH. Changes in the brain GSH are measured through magnetic resonance spectroscopy (MRS). The dose for the stage 2 will be selected based on the biological changes and the tolerability observed in the stage 1. The stage 2 will seek to replicate the biological signature findings in an 8-week trial in a new patient cohort, and examine the relationships among biological signatures, NAC pharmacokinetics and clinical response. This 2-stage project is unique as it unifies clinical psychiatric measurements, quantitative MRS and pharmacological approaches in the first placebo-controlled clinical trial of NAC in young women with NSSI. TRIAL REGISTRATION: The stage 1 trial protocol has been registered on https://clinicaltrials.gov/ with ClinicalTrials.gov ID "NCT04005053" (Registered on 02 July 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04005053).
RESUMO
Gaucher disease is an autosomal recessive metabolic disorder caused by mutations in GBA1, which encodes for the lysosomal hydrolase enzyme, ß-glucocerebrosidase. The resulting misfolded protein can trigger endoplasmic reticulum stress and an unfolded protein response within the affected cells. The enzyme deficiency leads to accumulation of its substrates, glucosylceramide and glucosylsphingosine, within macrophage lysosomes and with prominent disease manifestations in macrophage rich tissues. Resultant lysosomal pathology and impaired autophagy leads to redox imbalance, mitochondrial dysfunction and intracellular oxidative stress. Here we have systematically examined a role for oxidative stress in individuals affected by Gaucher disease. We compared multiple oxidative stress biomarkers in plasma and red blood cell samples from patients who are currently untreated, with those who are stable on standard-of-care therapy, and with healthy controls. We found significant differences in key oxidative stress biomarkers in untreated patients compared to healthy control. In treated patients, results generally fell between the controls and the untreated patients. Interestingly, even asymptomatic and minimally symptomatic untreated patients had evidence of significant systemic oxidative stress. We conclude that underlying oxidative stress may contribute to Gaucher disease pathophysiology including long-term adverse outcomes such as Parkinsonism and malignancies. Therapies targeting oxidative stress may prove useful as adjuvant treatments for Gaucher disease and other lysosomal storage disorders.
RESUMO
Oligodendrocytic injury by oxidative stress can lead to demyelination, contributing to neurodegeneration. We investigated the mechanisms by which an antioxidant, N-acetylcysteine (NAC), reduces oxidative stress in murine oligodendrocytes. We used normal 158N and mutant 158JP cells with endogenously high reactive oxygen species (ROS) levels. Oxidative stress was induced in 158N cells using hydrogen peroxide (H2O2, 500 µM), and both cells were treated with NAC (50 µM to 500 µM). ROS production, total glutathione (GSH) and cell survival were measured 24 h after treatment. In normal cells, H2O2 treatment resulted in a ~5.5-fold increase in ROS and ~50% cell death. These deleterious effects of oxidative stress were attenuated by NAC, resulting in improved cell survival. Similarly, NAC treatment resulted in decreased ROS levels in 158JP cells. Characterization of mechanisms underlying cytoprotection in both cell lines revealed an increase in GSH levels by NAC, which was partially blocked by an inhibitor of GSH synthesis. Interestingly, we observed heme oxygenase-1 (HO-1), a cytoprotective enzyme, play a critical role in cytoprotection. Inhibition of HO-1 activity abolished the cytoprotective effect of NAC with a corresponding decrease in total antioxidant capacity. Our results indicate that NAC promotes oligodendrocyte survival in oxidative stress-related conditions through multiple pathways.
Assuntos
Infecções por Coronavirus/complicações , Doença de Gaucher/complicações , Doença de Gaucher/terapia , Pneumonia Viral/complicações , Betacoronavirus , COVID-19 , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/terapia , Infecções por Coronavirus/epidemiologia , Previsões , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Medição de Risco , SARS-CoV-2RESUMO
Type 1 Gaucher disease (GD1), a glycosphingolipid storage disorder caused by deficient activity of lysosomal glucocerebrosidase, is classically considered non-neuronopathic. However, current evidence challenges this view. Multiple studies show that mutations in GBA1 gene and decreased glucocerebrosidase activity are associated with increased risk for Parkinson disease. We tested the hypothesis that subjects with GD1 will show neurochemical abnormalities consistent with cerebral involvement. We performed Magnetic Resonance Spectroscopy at 7 T to quantify neurochemical profiles in participants with GD1 (n = 12) who are on stable therapy. Age and gender matched healthy participants served as controls (n = 13). Neurochemical profiles were obtained from parietal white matter (PWM), posterior cingulate cortex (PCC), and putamen. Further, in the GD1 group, the neurochemical profiles were compared between individuals with and without a single L444P allele. We observed significantly lower levels of key neuronal markers, N-acetylaspartate, γ-aminobutyric acid, glutamate and glutamate-to-glutamine ratio in PCC of participants with GD1 compared to healthy controls (P < .015). Glutamate concentration was also lower in the putamen in GD1 (P = .01). Glucose + taurine concentration was significantly higher in PWM (P = .04). Interestingly, individuals without L444P had significantly lower aspartate and N-acetylaspartylglutamate in PCC (both P < .001), although this group was 7 years younger than those with an L444P allele. This study demonstrates neurochemical abnormalities in individuals with GD1, for which clinical and prognostic significance remains to be determined. Further studies in a larger cohort are required to confirm an association of neurochemical levels with mutation status and glucocerebrosidase structure and function. SYNOPSIS: Ultrahigh field magnetic resonance spectroscopy reveals abnormalities in neurochemical profiles in patients with GD1 compared to matched healthy controls.
Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Doença de Gaucher/patologia , Doença de Gaucher/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Eletrofisiologia , Feminino , Doença de Gaucher/terapia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Padrão de CuidadoRESUMO
The discovery that patients with Gaucher Disease (GD), a rare lysosomal storage disorder, were developing symptoms similar to Parkinson's disease (PD) led to investigation of the relationship between the two seemingly unrelated pathologies. GD, an autosomal recessive disorder, is the result of a biallelic mutation in the gene GBA1, which encodes for the enzyme glucocerebrosidase (GCase). Since the observation of its relation to PD, GBA1 mutations have become recognized as the most common genetic risk factor for development of synucleinopathies such as PD and dementia with Lewy bodies. Although the exact mechanism by which GBA1 mutations promote PD is unknown, current understanding suggests that impaired GCase inhibits lysosomal activity and decreases the overall ability of the cell to degrade proteins, specifically the neuronal protein α-synuclein. Decreased elimination of α-synuclein can lead to its abnormal accumulation and aggregation, an important component of PD development. Further understanding of how decreased GCase activity increases risk for α-synuclein pathology can assist with the development of clinical biomarkers for early detection of synucleinopathies, as well as promote novel treatments tailored for people with a GBA1 mutation. Historically, α-synuclein has not been a reliable biomarker for PD. However, recent research on α-synuclein content within exosomes, which are small vesicles released by cells that carry specific cellular cargo, has yielded encouraging results. Moreover, decreased GCase activity has been shown to influence exosomal contents. Exosomes have emerged as a promising new avenue for the identification of novel biomarkers and therapeutic targets aimed at improving neuronal GCase function and limiting the development of synucleinopathies.
Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Mutação , Doença de Parkinson/genética , Sinucleinopatias/genética , alfa-Sinucleína/genética , Animais , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Humanos , Lisossomos/metabolismo , Camundongos , Doença de Parkinson/tratamento farmacológico , Sinucleinopatias/tratamento farmacológicoRESUMO
Age-related macular degeneration (AMD) involves the loss of retinal pigment epithelium (RPE) and photoreceptors and is one of the leading causes of blindness in the elderly. Oxidative damage to proteins, lipids, and DNA has been associated with RPE dysfunction and AMD. In this study, we evaluated oxidative stress in AMD and the efficacy of antioxidant, N-acetyl-L-cysteine (NAC), in protecting RPE from oxidative damage. To test this idea, primary cultures of RPE from human donors with AMD (n = 32) or without AMD (No AMD, n = 21) were examined for expression of NADPH oxidase (NOX) genes, a source of reactive oxygen species (ROS). Additionally, the cells were pretreated with NAC for 2 hours and then treated with either hydrogen peroxide (H2O2) or tert-butyl hydroperoxide (t-BHP) to induce cellular oxidation. Twenty-four hours after treatment, ROS production, cell survival, the content of glutathione (GSH) and adenosine triphosphate (ATP), and cellular bioenergetics were measured. We found increased expression of p22phox, a NOX regulator, in AMD cells compared to No AMD cells (p = 0.02). In both AMD and No AMD cells, NAC pretreatment reduced t-BHP-induced ROS production and protected from H2O2-induced cell death and ATP depletion. In the absence of oxidation, NAC treatment improved mitochondrial function in both groups (p < 0.01). Conversely, the protective response exhibited by NAC was disease-dependent for some parameters. In the absence of oxidation, NAC significantly reduced ROS production (p < 0.001) and increased GSH content (p = 0.02) only in RPE from AMD donors. Additionally, NAC-mediated protection from H2O2-induced GSH depletion (p = 0.04) and mitochondrial dysfunction (p < 0.05) was more pronounced in AMD cells compared with No AMD cells. These results demonstrate the therapeutic benefit of NAC by mitigating oxidative damage in RPE. Additionally, the favorable outcomes observed for AMD RPE support NAC's relevance and the potential therapeutic value in treating AMD.
Assuntos
Acetilcisteína/uso terapêutico , Células Epiteliais/metabolismo , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Acetilcisteína/farmacologia , Humanos , Degeneração Macular/patologiaRESUMO
Over the last few decades there has been a paradigm shift in orphan drug research and development. The development of the regulatory framework, establishment of rare disease global networks that support drug developments, and advances in technology, has resulted in tremendous growth in orphan drug development. Nevertheless, several challenges during orphan drug development such as economic constraints; insufficient clinical information; fewer patients and thus inadequate power; etc. still exist. While the standard regulatory requirements for drug approval stays the same, applications of scientific judgment and regulatory flexibility is significantly important to help meeting some of the immense unmet medical need in rare diseases. Clinical pharmacology presents a vital role in accelerating orphan drug development and overcoming some of these challenges. This review highlights the critical contributions of clinical pharmacology in orphan drug development; for example, dose finding, optimizing clinical trial design, indication expansion, and population extrapolation. Examples of such applications are reviewed in this article.
Assuntos
Produção de Droga sem Interesse Comercial/métodos , Farmacologia Clínica , Aprovação de Drogas , Humanos , Estados Unidos , United States Food and Drug AdministrationRESUMO
OBJECTIVE: To examine the feasibility, acceptability, and preliminary effects of Hatha yoga on oxidative stress, motor function, and non-motor symptoms among individuals with Parkinson's disease (PD). METHODS: The study has a pilot randomized controlled trial design with two arms: an immediate treatment group and a wait-list control group. The yoga-for-PD program was implemented via twice weekly 60-min group-based classes for 12 weeks. Participants were assessed at baseline, 12 weeks, and 6 months post-intervention. Outcome measures included oxidative stress, motor function, physical activity, cognitive function, sleep quality, and quality of life. Data on program acceptability and yoga adherence were collected during the intervention and at 6 months post-intervention. RESULTS: Participants (n = 20) had a mean age of 63 years (SD 8, range 49-75) and disease duration 4.8 years (SD 2.9, range 1-13). All participants had mild-moderate disease severity; 18 (90%) were on dopaminergic medications. Seventeen participants (85%) attended at least 75% of the classes and 4 (20%) attended all classes. Most participants (n = 17) reported they "definitely enjoyed" the intervention program. No adverse events were reported. At 12 weeks, there were no major differences in blood oxidative stress markers between the two groups. Motor function based on the Unified Parkinson's Disease Rating Scale was better in the treatment group, but their scores on sleep and outlook in Parkinson's Disease Quality of Life (PDQUALIF) Scale and the physical activity levels based on the Longitudinal Aging Study Amsterdam Physical Activity Questionnaire were worse than those of the control group. In within-group comparisons, motor function, cognitive function, and catalase improved but three PDQUALIF domains (social and role function, sleep, and outlook) and physical activity level worsened by the end of the yoga intervention program compared to baseline. The response rate for the 6-month follow-up survey was 74% (n = 14) with six participants (43%) who signed up for a yoga class and four (29%) who practiced it independently. Health problems were the main barrier to yoga practice. CONCLUSION: Yoga is feasible and acceptable and may serve as a complementary method for improving motor function in PD. Further research using a larger sample size is needed to determine its impact on oxidative stress and non-motor symptoms. TRIAL REGISTRATION: ClinicalTrials.gov Registration Number: NCT02509610031.