Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 234: 113763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262106

RESUMO

In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.


Assuntos
Nanocompostos , Neoplasias Cutâneas , Compostos de Vanádio , Humanos , Fosfatidilinositol 3-Quinases , Níquel/farmacologia , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Espectroscopia Fotoeletrônica , Apoptose , Neoplasias Cutâneas/tratamento farmacológico
2.
Chemosphere ; 264(Pt 1): 128481, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33045558

RESUMO

Reduced graphene oxide/cadmium sulfide (RGOCdS) nanocomposite synthesized through solvothermal process was used for methylparaben (MeP) degradation. The crystallinity of the nanocomposite was ascertained through X-ray diffraction. High resolution transmission electron microscope (HRTEM) results proved the absence of any free particle beyond the catalyst surface ensuring the composite nature of the prepared material. The enhancement in the activity on doping with RGO was substantiated by diffuse reflectance spectroscopy (DRS-UV). It is evident from the photocatalytic degradation experiments that RGOCdS is more efficient than pure CdS. Maximum MeP degradation (100%) was achieved after 90 min of irradiation with 750 mg/L RGOCdS dosage at an acidic pH of 3, for an initial MeP concentration of 30 mg/L. The degradation mechanism substantiated through HPLC-MS/MS analysis showed the complete degradation of MeP without any residual intermediaries. The catalyst could be sustained and reused for up to 9 cycles of usage. Phytotoxicity and mycotoxicity results evidently ascertain the environmental implications of the photocatalyst material.


Assuntos
Espectrometria de Massas em Tandem , Titânio , Compostos de Cádmio , Grafite , Luz , Parabenos , Sulfetos
3.
Comput Biol Chem ; 70: 175-185, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28950208

RESUMO

Pelargonidin is an anthocyanidin isolated from plant resources. It shows strong cytotoxicity toward various cancer cell lines, even though the carcinogenesis-modulating pathway of pelargonidin is not yet known. One of our previous reports showed that pelargonidin arrests the cell cycle and induces apoptosis in HT29 cells. Flowcytometry and immunoblot analysis confirmed that pelargonidin specifically inhibits the activation of CDK1 and blocks the G2-M transition of the cell cycle. In addition, DNA fragmentation was observed along with induction of cytochrome c release-mediated apoptosis. Hence, the aim of the present study was to investigate the molecular mechanism of pelargonidin's action on cell cycle regulators CDK1, CDK4, and CDK6 as well as the substrate-binding domain of DNMT1 and DNMT3A, which regulate the epigenetic signals related to DNA methylation. The results of docking analysis, binding free energy calculation, and molecular dynamics simulation correlated with the experimental results, and pelargonidin showed a specific interaction with CDK1. In this context, pelargonidin may also inhibit the recognition of DNA and catalytic binding by DNMT1 and DNMT3A. The HOMO-LUMO analysis mapped the functional groups of pelargonidin. Prediction of pharmacological descriptors suggested that pelargonidin can serve as a multitarget inhibitor for cancer treatment.


Assuntos
Antocianinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Modelos Moleculares , Antocianinas/química , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Humanos , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA