Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 120982, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678904

RESUMO

Metals are essential at trace levels to aquatic organisms for the function of many physiological and biological processes. But their elevated levels are toxic to the ecosystem and even brings about shifts in the plankton population. Threshold limits such as Predicted No Effect Concentration (PNEC - 0.6 µg/l of Cd; 2.7 µg/l of Pb), Criterion Continuous Concentration (CCC - 3.0 µg/l of Cd; 4.5 µg/l of Pb) and Criterion Maximum Concentration (CMC - 23 µg/l of Cd; 130 µg/l of Pb) prescribed for Indian coastal waters were used for the study. Short-term mesocosm experiments (96 h) were conducted in coastal waters of Visakhapatnam to evaluate responses of the planktonic community on exposure to threshold concentrations of cadmium and lead for the first time. Four individual experimental bags of 2500 L capacity (Control, PNEC, CCC & CMC) were used for the deployment and ambient water samples were analysed simultaneously to evaluate the impacts of the threshold levels in the natural waters. Chaetoceros sp. were dominant group in the control system whereas, Prorocentrum sp. Ceratium sp. Tintinopsis sp. Chaetoceros sp. and Skeletonema sp. were major groups in the test bags. Throughout the experiment the phytoplankton community did not show any significant differences with increased nutrients and plankton biomass (Chl-a <8.64 mg/m3). Positive response of plankton community was observed in the experimental bags. High abundance of diatoms were observed in PNEC, CCC & CMC bags at 48 h and the abundance decreased with shift in the species at 72-96 h. The catalase activity in phytoplankton (5.99 nmol/min/ml) and the zooplankton (4.77 nmol/min/ml) showed induction after exposure to PNEC. The present mesocosm study is confirmed that short-term exposure to threshold metal concentration did not affects the phytoplankton community structure in PNEC, but CCC and CMC affects the community structure beyond 24 h. The insights from this study will serve as a baseline information and help develop environmental management tools. We believe that long-term mesocosm experiments would unravel metal detoxification mechanisms at the cellular level and metal transfer rate at higher trophic levels in real-world environment.


Assuntos
Cádmio , Chumbo , Plâncton , Poluentes Químicos da Água , Plâncton/efeitos dos fármacos , Plâncton/metabolismo , Cádmio/análise , Cádmio/toxicidade , Chumbo/análise , Chumbo/toxicidade , Chumbo/metabolismo , Poluentes Químicos da Água/análise , Baías , Ecossistema , Monitoramento Ambiental , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo
2.
Ecotoxicol Environ Saf ; 208: 111612, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396132

RESUMO

Water quality standards are essential for regulation of contaminants in marine environment. Seawater quality criteria (SWQC) for arsenic (As), cadmium (Cd) and lead (Pb) have not been developed for India. The aim of this study is to derive the SWQC for the metals based on Species Sensitivity Distribution (SSD). Eight species of sensitive marine organisms belonging to five phyla were assessed for their sensitivity to toxicity of As, Cd and Pb. Median effective concentrations (EC50) and Median Lethal Concentrations (LC50) were derived from the acute toxicity bio-assays. No Observed Effect Concentrations (NOEC), Lowest Observed Effect Concentrations (LOEC) and chronic values were derived from chronic toxicity bio-assays. Diatoms were more sensitive to As with 96 h EC50 of 0.1 mg/l and copepods were more sensitive to Cd and Pb with 96 h EC50 of 0.019 mg/l and 0.05 mg/l respectively. Estimated NOECs ranged from 4.87 to 21.55 µg/l of As, 1.0 to 120 µg/l of Cd and 5.67 to 91.67 µg/l of Pb. Similarly, chronic values (µg/l) were in the range of 6.71-26.1, 1.38-170, and 7.67-91.67 of As, Cd and Pb respectively. The Criterion Maximum Concentration (CMC), Criterion Continuous Concentration (CCC) and Predicted No Effect Concentration (PNEC) values were prescribed as SWQC. The CMC (µg/l) of 19, 1.7 and 17 for As, Cd, and Pb were derived respectively for acute exposure during accidental marine outfalls. The CCC (µg/l) for As was 4.6, 1.1 for Cd and 5.9 for Pb are recommended as SWQC for protection of 95% of marine organisms. PNEC (µg/l) of 3.8 for As, 0.92 for Cd and 4.3 for Pb are suggested for highly disturbed ecosystems, shell fishing and mariculture uses of water bodies. These values are recommended as a baseline for site specific water quality criteria for the coastal waters of the country.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Arsênio/toxicidade , Cádmio/toxicidade , Chumbo/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Animais , Arsênio/análise , Cádmio/análise , Copépodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Ecossistema , Índia , Chumbo/análise , Dose Letal Mediana , Especificidade da Espécie , Poluentes Químicos da Água/análise
3.
Chemosphere ; 237: 124428, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31362133

RESUMO

The present study evaluates the enzyme activities and histopathological changes in the post larvae (PL) of shrimp (Penaeus monodon), green mussel (Perna viridis) and fingerlings of crescent perch (Terapon jarbua) exposed to sublethal gradient concentrations of Nickel (Ni). The median lethal concentration (LC50) values were 2.49, 66.03 and 43.92 mg Ni L-1 derived for the PL of shrimp, green mussel and fish fingerlings respectively. No Observed Effect Concentration (NOEC), Lowest Observed Effect Concentration (LOEC) and chronic values of the PL of shrimp were 46.5, 73.0 and 58.3 µg Ni L-1 derived for the 21-d survival endpoint. The NOEC, LOEC and chronic values for the 30-d survival endpoint of the green mussels and fish fingerlings were 4.6, 6.32, 5.4 and 1.95, 2.6, 2.25 mg Ni L-1 respectively. The isoforms of esterase, superoxide dismutase and malate dehydrogenase activities in the whole body tissues of test organisms were studied by native polyacrylamide gel electrophoresis after exposure to Ni. Histological examination of compound eye sections of shrimp revealed deformation, compression, fusion and detachement in the corneal cells from the corneal facet of the ommatidia indicating cellular anomalies due to Ni toxicity. Gill sections of the green mussel witnessed reduced haemolymph in sinuses of gill filaments, degenerative changes in interfilamentous junction and necrosis of frontal ciliated epithelial cells with vacuoles after exposure to Ni. Nickel affects the vision of shrimp and fish fingerlings, gills and byssus of green mussels.


Assuntos
Bivalves/efeitos dos fármacos , Níquel/toxicidade , Penaeidae/efeitos dos fármacos , Percas/crescimento & desenvolvimento , Perna (Organismo)/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/enzimologia , Bivalves/crescimento & desenvolvimento , Esterases/química , Olho/efeitos dos fármacos , Olho/patologia , Brânquias/efeitos dos fármacos , Brânquias/patologia , Malato Desidrogenase/química , Níquel/farmacologia , Penaeidae/enzimologia , Penaeidae/crescimento & desenvolvimento , Perna (Organismo)/enzimologia , Perna (Organismo)/crescimento & desenvolvimento , Superóxido Dismutase/química
4.
Chemosphere ; 199: 340-350, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453060

RESUMO

The study was carried out to evaluate enzyme activities and histopathological changes due to the effect of acute and chronic definitive toxicity of selenium (Se) on the post larvae (PL) of giant tiger shrimp (Penaeus monodon), and green mussel (Perna viridis). The 96-h Median Lethal concentration (LC50) for the PL of shrimp was 3.36 mg L-1 and the chronic value for the long-term survival endpoint in a 21-d exposure was 0.10 mg L-1. The green mussel 96-h LC50 was 28.41 mg L-1 and the chronic value for the long-term survival endpoint in a 30-d exposure was 3.06 mg L-1. Native polyacrylamide gel electrophoresis revealed altered diverse isoforms of esterase, superoxide dismutase and malate dehydrogenase activities in the PL of shrimp and green mussel exposed to sublethal concentration of Se. Cellular anomalies such as deformation and fusion of corneal cells, detachment of corneal cells from cornea facet and increased space between ommatidia were observed in the compound eye of PL of shrimp exposed to Se for 21-d. Shrinkage and clumping of mucous gland, degenerative changes in phenol gland, and ciliated epithelium were observed in the foot of green mussel exposed to Se for 30-d. This study shows that cellular anomalies in the compound eye of PL of P. monodon and foot tissues of P. viridis described would affect the vision of shrimp and byssus thread formation in green mussel.


Assuntos
Penaeidae/efeitos dos fármacos , Perna (Organismo)/efeitos dos fármacos , Selênio/farmacologia , Animais , Células/patologia , Esterases/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Penaeidae/enzimologia , Perna (Organismo)/enzimologia , Superóxido Dismutase/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA