Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 79(8): 1446-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27497135

RESUMO

This study determined the prevalence of multidrug-resistant (MDR) Acinetobacter baumannii on fresh vegetables collected from farmers' markets in Connecticut. One hundred samples each of fresh carrots, potatoes, and lettuce were sampled and streaked on selective media, namely Leeds Acinetobacter and MDR Acinetobacter agars. All morphologically different colonies from MDR Acinetobacter agar were identified by using Gram staining, biochemical tests, and PCR. In addition, susceptibility of the isolates to 10 antibiotics commonly used in humans, namely imipenem, ceftriaxone, cefepime, minocycline, erythromycin, colistin-sulfate, streptomycin, neomycin, doxycycline, and rifampin was determined by using an antibiotic disk diffusion assay. The results revealed that only two samples of potato and one sample of lettuce yielded A. baumannii. In addition, all carrot samples were found to be negative for the organism. However, several other opportunistic, MDR human pathogens, such as Burkholderia cepacia (1% potatoes, 5% carrots, and none in lettuce), Stenotrophomonas maltophilia (6% potatoes, 2% lettuce, and none in carrots), and Pseudomonas luteola (9% potatoes, 3% carrots, and none in lettuce) were recovered from the vegetables. Antibiotic susceptibility screening of the isolates revealed high resistance rates for the following: ceftriaxone (6 of 6), colistin-sulfate (5 of 6), erythromycin (5 of 6), and streptomycin (4 of 6) in B. cepacia; colistin-sulfate (11 of 11) and imipenem (10 of 11) in P. luteola; colistin-sulfate (8 of 8), ceftriaxone (8 of 8), cefepime (7 of 8), erythromycin (5 of 8), and imipenem (4 of 8) in S. maltophilia; and imipenem (3 of 3), ceftriaxone (3 of 3), erythromycin (3 of 3), and streptomycin (3 of 3) in A. baumannii. The results revealed the presence of MDR bacteria, including human pathogens on fresh produce, thereby highlighting the potential health risk in consumers, especially those with a compromised immune system.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii/classificação , Antibacterianos/farmacologia , Connecticut , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fazendeiros , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Verduras/efeitos dos fármacos , Verduras/microbiologia
2.
Front Microbiol ; 7: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870000

RESUMO

Escherichia coli O157: H7 (EHEC) is a major foodborne pathogen largely transmitted to humans through the consumption of undercooked ground beef. This study investigated the efficacy of two food-grade, plant-derived antimicrobials, namely rutin (RT), and resveratrol (RV) with or without chitosan (CH) in enhancing EHEC inactivation in undercooked hamburger patties. Further, the effect of aforementioned treatments on beef color and lipid oxidation was analyzed. Additionally, the deleterious effects of these antimicrobial treatments on EHEC was determined using scanning electron microscopy (SEM). Ground beef was inoculated with a five-strain mixture of EHEC (7.0 log CFU/g), followed by the addition of RT (0.05%, 0.1% w/w) or RV (0.1, 0.2% w/w) with or without CH (0.01% w/w). The meat was formed into patties (25 g) and stored at 4°C for 5 days. On days 1, 3, and 5, the patties were cooked (65°C, medium rare) and surviving EHEC was enumerated. The effect of these treatments on meat color and lipid oxidation during storage was also determined as per American Meat Science Association guidelines. The study was repeated three times with duplicate samples of each treatment. Both RT and RV enhanced the thermal destruction of EHEC, and reduced the pathogen load by at least 3 log CFU/g compared to control (P < 0.05). The combination of RT or RV with CH was found to be more effective, and reduced EHEC by 5 log CFU/g (P < 0.05). EHEC counts in uncooked patties did not decline during storage for 5 days (P > 0.05). Moreover, patties treated with RV plus CH were more color stable with higher a(∗) values (P < 0.05). SEM results revealed that heat treatment with antimicrobials (CH + RV 0.2%) resulted in complete destruction of EHEC cells and extrusion of intracellular contents. Results suggest that the aforementioned antimicrobials could be used for enhancing the thermal inactivation of EHEC in undercooked patties; however, detailed sensory studies are warranted.

3.
Int J Environ Res Public Health ; 11(2): 1844-54, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24514427

RESUMO

Acinetobacter baumannii is a multidrug resistant pathogen capable of causing a wide spectrum of clinical conditions in humans. Acinetobacter spp. is ubiquitously found in different water sources. Chlorine being the most commonly used disinfectant in water, the study investigated the effect of chlorine on the survival of A. baumannii in water and transcription of genes conferring antibiotic resistance. Eight clinical isolates of A. baumannii, including a fatal meningitis isolate (ATCC 17978) (~108 CFU/mL) were separately exposed to free chlorine concentrations (0.2, 1, 2, 3 and 4 ppm) with a contact time of 30, 60, 90 and 120 second. The surviving pathogen counts at each specified contact time were determined using broth dilution assay. In addition, real-time quantitative PCR (RT-qPCR) analysis of the antibiotic resistance genes (efflux pump genes and those encoding resistance to specific antibiotics) of three selected A. baumannii strains following exposure to chlorine was performed. Results revealed that all eight A. baumannii isolates survived the tested chlorine levels during all exposure times (p > 0.05). Additionally, there was an up-regulation of all or some of the antibiotic resistance genes in A. baumannii, indicating a chlorine-associated induction of antibiotic resistance in the pathogen.


Assuntos
Acinetobacter baumannii , Cloro , Farmacorresistência Bacteriana/genética , Microbiologia da Água , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Desinfecção , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA