Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 11(9): e12263, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103151

RESUMO

Extracellular vesicle (EV) secretion enables cell-cell communication in multicellular organisms. During development, EV secretion and the specific loading of signalling factors in EVs contributes to organ development and tissue differentiation. Here, we present an in vivo model to study EV secretion using the fat body and the haemolymph of the fruit fly, Drosophila melanogaster. The system makes use of tissue-specific EV labelling and is amenable to genetic modification by RNAi. This allows the unique combination of microscopic visualisation of EVs in different organs and quantitative biochemical purification to study how EVs are generated within the cells and which factors regulate their secretion in vivo. Characterisation of the system revealed that secretion of EVs from the fat body is mainly regulated by Rab11 and Rab35, highlighting the importance of recycling Rab GTPase family members for EV secretion. We furthermore discovered a so far unknown function of Rab14 along with the kinesin Klp98A in EV biogenesis and secretion.


Assuntos
Proteínas de Drosophila , Vesículas Extracelulares , Animais , Secreções Corporais , Drosophila melanogaster , Endossomos , Cinesinas , Transdução de Sinais , Proteínas rab de Ligação ao GTP
2.
Biomolecules ; 10(11)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207719

RESUMO

Sensitive factor attachment protein receptors (SNARE) proteins are important mediators of protein trafficking that regulate the membrane fusion of specific vesicle populations and their target organelles. The SNARE protein Ykt6 lacks a transmembrane domain and attaches to different organelle membranes. Mechanistically, Ykt6 activity is thought to be regulated by a conformational change from a closed cytosolic form to an open membrane-bound form, yet the mechanism that regulates this transition is unknown. We identified phosphorylation sites in the SNARE domain of Ykt6 that mediate Ykt6 membrane recruitment and are essential for cellular growth. Using proximity-dependent labeling and membrane fractionation, we found that phosphorylation regulates Ykt6 conversion from a closed to an open conformation. This conformational switch recruits Ykt6 to several organelle membranes, where it functionally regulates the trafficking of Wnt proteins and extracellular vesicle secretion in a concentration-dependent manner. We propose that phosphorylation of its SNARE domain leads to a conformational switch from a cytosolic, auto-inhibited Ykt6 to an active SNARE at different membranes.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fusão de Membrana/fisiologia , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila , Células HCT116 , Células HEK293 , Humanos , Fosforilação/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
3.
Development ; 147(15)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32611603

RESUMO

Morphogens are important signalling molecules for tissue development and their secretion requires tight regulation. In the wing imaginal disc of flies, the morphogen Wnt/Wingless is apically presented by the secreting cell and re-internalized before final long-range secretion. Why Wnt molecules undergo these trafficking steps and the nature of the regulatory control within the endosomal compartment remain unclear. Here, we have investigated how Wnts are sorted at the level of endosomes by the versatile v-SNARE Ykt6. Using in vivo genetics, proximity-dependent proteomics and in vitro biochemical analyses, we show that most Ykt6 is present in the cytosol, but can be recruited to de-acidified compartments and recycle Wnts to the plasma membrane via Rab4-positive recycling endosomes. Thus, we propose a molecular mechanism by which producing cells integrate and leverage endocytosis and recycling via Ykt6 to coordinate extracellular Wnt levels.


Assuntos
Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Proteínas R-SNARE/metabolismo , Asas de Animais/embriologia , Proteínas Wnt/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Endossomos/genética , Epitélio/embriologia , Proteínas R-SNARE/genética , Proteínas Wnt/genética
4.
J Biol Chem ; 295(26): 8759-8774, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32381507

RESUMO

The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1-10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/ß-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.


Assuntos
Receptores Frizzled/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Animais , Receptores Frizzled/análise , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Microscopia Confocal/métodos , Mapas de Interação de Proteínas , Transporte Proteico , Proteína Wnt3A/análise , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA