Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374160

RESUMO

Bone mechanics is well understood at every length scale except the nano-level. We aimed to investigate the relationship between bone nanoscale and tissue-level mechanics experimentally. We tested two hypotheses: (1) nanoscale strains were lower in hip fracture patients versus controls, and (2) nanoscale mineral and fibril strains were inversely correlated with aging and fracture. A cross-sectional sample of trabecular bone sections was prepared from the proximal femora of two human donor groups (aged 44-94 years): an aging non-fracture control group (n = 17) and a hip-fracture group (n = 20). Tissue, fibril, and mineral strain were measured simultaneously using synchrotron X-ray diffraction during tensile load to failure, then compared between groups using unpaired t-tests and correlated with age using Pearson's correlation. Controls exhibited significantly greater peak tissue, mineral, and fibril strains than the hip fracture (all p < 0.05). Age was associated with a decrease in peak tissue (p = 0.099) and mineral (p = 0.004) strain, but not fibril strain (p = 0.260). Overall, hip fracture and aging were associated with changes in the nanoscale strain that are reflected at the tissue level. Data must be interpreted within the limitations of the observational cross-sectional study design, so we propose two new hypotheses on the importance of nanomechanics. (1) Hip fracture risk is increased by low tissue strain, which can be caused by low collagen or mineral strain. (2) Age-related loss of tissue strain is dependent on the loss of mineral but not fibril strain. Novel insights into bone nano- and tissue-level mechanics could provide a platform for the development of bone health diagnostics and interventions based on failure mechanisms from the nanoscale up.

2.
J Am Ceram Soc ; 105(3): 1671-1684, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35875405

RESUMO

We propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture. Therefore, being able to monitor sintering in 3D over time (termed 4D) is important when developing new porous ceramics or glasses. Synchrotron X-ray tomographic imaging allows in situ, real-time capture of the sintering process at both micro and macro scales using a furnace rig, facilitating 4D quantitative analysis of the process. The proposed image analysis framework is capable of tracking and quantifying the densification of glass or ceramic particles within multiple volumes of interest (VOIs) along with structural changes over time using 4D image data. The framework is demonstrated by 4D quantitative analysis of bioactive glass ICIE16 within a 3D-printed scaffold. Here, densification of glass particles within 3 VOIs were tracked and quantified along with diameter change of struts and interstrut pore size over the 3D image series, delivering new insights on the sintering mechanism of ICIE16 bioactive glass particles in both micro and macro scales.

3.
Sci Rep ; 10(1): 14208, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848149

RESUMO

Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load. Mechanical data were compared across groups, and tissue-level data were regressed against nano. Compared to controls fracture patients exhibited significantly lower critical tissue strain, max strain and normalized strength, with lower peak fibril and mineral strain. Bisphosphonate-treated exhibited the lowest properties. In all three groups, peak mineral strain coincided with maximum tissue strength (i.e. ultimate stress), whilst peak fibril strain occurred afterwards (i.e. higher tissue strain). Tissue strain and strength were positively and strongly correlated with peak fibril and mineral strains. Age-related fractures were associated with lower peak fibril and mineral strain irrespective of treatment. Indicating earlier mineral disengagement and the subsequent onset of fibril sliding is one of the key mechanisms leading to fracture. Treatments for fragility should target collagen-mineral interactions to restore nano-scale strain to that of healthy bone.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/fisiologia , Colágenos Fibrilares/fisiologia , Fraturas do Quadril/etiologia , Osteoporose/complicações , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Nanoestruturas , Osteoporose/fisiopatologia
4.
Sci Rep ; 8(1): 3707, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487334

RESUMO

Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling.


Assuntos
Ligamentos/fisiologia , Fenômenos Biomecânicos , Colágeno/metabolismo , Simulação por Computador , Humanos , Estresse Mecânico , Difração de Raios X
5.
ACS Nano ; 11(10): 9728-9737, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28800220

RESUMO

Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.


Assuntos
Colágenos Fibrilares/química , Proteoglicanas/química , Animais , Bovinos , Humanos , Pressão Osmótica , Espalhamento a Baixo Ângulo , Fatores de Tempo , Difração de Raios X
6.
Sci Rep ; 7: 43399, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262693

RESUMO

Osteoporosis is characterised by trabecular bone loss resulting from increased osteoclast activation and unbalanced coupling between resorption and formation, which induces a thinning of trabeculae and trabecular perforations. Bisphosphonates are the frontline therapy for osteoporosis, which act by reducing bone remodelling, and are thought to prevent perforations and maintain microstructure. However, bisphosphonates may oversuppress remodelling resulting in accumulation of microcracks. This paper aims to investigate the effect of bisphosphonate treatment on microstructure and mechanical strength. Assessment of microdamage within the trabecular bone core was performed using synchrotron X-ray micro-CT linked to image analysis software. Bone from bisphosphonate-treated fracture patients exhibited fewer perforations but more numerous and larger microcracks than both fracture and non-fracture controls. Furthermore, bisphosphonate-treated bone demonstrated reduced tensile strength and Young's Modulus. These findings suggest that bisphosphonate therapy is effective at reducing perforations but may also cause microcrack accumulation, leading to a loss of microstructural integrity and consequently, reduced mechanical strength.


Assuntos
Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Osso e Ossos/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/lesões , Estudos de Casos e Controles , Módulo de Elasticidade , Feminino , Fraturas Ósseas/patologia , Fraturas Ósseas/cirurgia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Síncrotrons , Resistência à Tração , Microtomografia por Raio-X
7.
J Mech Behav Biomed Mater ; 66: 68-76, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27838592

RESUMO

Radiological features alone do not allow the discrimination between accidental paediatric long bone fractures or those sustained by child abuse. Therefore, there is a clinical need to elucidate the mechanisms behind each fracture to provide a forensic biomechanical tool for the vulnerable child. Four-point bending and torsional loading tests were conducted at more than one strain rate for the first time on immature bone, using a specimen-specific alignment system, to characterise structural behaviour at para-physiological strain rates. The bones behaved linearly to the point of fracture in all cases and transverse, oblique, and spiral fracture patterns were consistently reproduced. The results showed that there was a significant difference in bending stiffness between transverse and oblique fractures in four-point bending. For torsional loading, spiral fractures were produced in all cases with a significant difference in the energy and obliquity to fracture. Multiple or comminuted fractures were seen only in bones that failed at a higher stress or torque for both loading types. This demonstrates the differentiation of fracture patterns at different strain rates for the first time for immature bones, which may be used to match the case history given of a child and the fracture produced.


Assuntos
Maus-Tratos Infantis/diagnóstico , Medicina Legal , Fraturas Ósseas , Fenômenos Biomecânicos , Criança , Humanos , Estresse Mecânico , Torque
8.
Clin Rev Bone Miner Metab ; 14(3): 150-160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683260

RESUMO

Bone is a complex hierarchical structure, and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence, analysis of their specific roles in bone strength and stiffness is difficult. Synchrotron imaging technologies including micro-CT and small/wide angle X-ray scattering/diffraction are becoming increasingly popular for studying bone because the images can resolve deformations in the micro-architecture and collagen-mineral matrix under in situ mechanical loading. Synchrotron cannot be directly applied in vivo due to the high radiation dose but will allow researchers to carry out systematic multifaceted studies of bone ex vivo. Identifying characteristics of aging and disease will underpin future efforts to generate novel devices and interventional therapies for assessing and promoting healthy aging. With our own research work as examples, this paper introduces how synchrotron imaging technology can be used with in situ testing in bone research.

9.
J Mech Behav Biomed Mater ; 41: 261-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25086777

RESUMO

The material properties of ligaments are not well characterized at rates of deformation that occur during high-speed injuries. The aim of this study was to measure the material properties of lateral collateral ligament of the porcine stifle joint in a uniaxial tension model through strain rates in the range from 0.01 to 100/s. Failure strain, tensile modulus and failure stress were calculated. Across the range of strain rates, tensile modulus increased from 288 to 905 MPa and failure stress increased from 39.9 to 77.3 MPa. The strain-rate sensitivity of the material properties decreased as deformation rates increased, and reached a limit at approximately 1/s, beyond which there was no further significant change. In addition, time resolved microfocus small angle X-ray scattering was used to measure the effective fibril modulus (stress/fibril strain) and fibril to tissue strain ratio. The nanoscale data suggest that the contribution of the collagen fibrils towards the observed tissue-level deformation of ligaments diminishes as the loading rate increases. These findings help to predict the patterns of limb injuries that occur at different speeds and improve computational models used to assess and develop mitigation technology.


Assuntos
Joelho , Ligamentos Laterais do Tornozelo , Teste de Materiais , Estresse Mecânico , Animais , Feminino , Humanos , Modelos Biológicos , Suínos
10.
Biomater Sci ; 2(5): 710-722, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32481845

RESUMO

Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of parameters for creating precisely tuned biomimetic materials. We investigated the molecular design and structural hierarchy of elastomeric egg capsules from the marine snail Pugilina cochlidium (family Melongenidae) and compared these data with all available published studies in order to infer the structure-property relationships of the egg case from the molecular to the macroscopic scale. While mechanical similarities had previously been observed for two other marine melongenid snails, Busycotypus canaliculatus and Busycon carica, B. canaliculatus was the only species for which detailed molecular and nanostructural data were available. Egg capsules from P. cochlidium were found to exhibit mechanical properties and shock absorbing potential that was similar to B. canaliculatus. The two species also displayed similarity in hierarchical fibril bundling and a sub-micron staggering of 100-105 nm within filaments, as shown by atomic force microscopy and small angle X-ray diffraction. In situ Raman micro spectroscopy indicated that P. cochlidium egg cases undergo a stress-induced coiled-coil to extended ß-strand structural transformation that is very similar to that of B. canaliculatus. These observations supported the view that these structural and hierarchical elements are essential for egg case function. Comparative analysis of the primary amino acid sequences and structural predictions for all known egg case proteins suggested that while the proteins all contain sequences prone to adopt α-helical structures, the predicted location of coiled-coil domains and stutter perturbations varied within and between species. Despite these differences, mixtures of denatured native egg case proteins readily re-folded in citrate-phosphate assembly buffer into α-helix rich, coiled-coil based oligomers, as determined by attenuated total reflection Fourier transform infrared spectroscopy, circular dichroism and MALDI-TOF. It is concluded that both conserved and divergent designs in marine snail egg cases offer inspiration for the engineering of biomimetic elastomeric materials with a unique capability for mechanical energy absorption.

11.
Methods Enzymol ; 532: 415-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188778

RESUMO

In situ synchrotron X-ray scattering and diffraction, in combination with micromechanical testing, can provide quantitative information on the nanoscale mechanics of biomineralized composites, such as bone, nacre, and enamel. Due to the hierarchical architecture of these systems, the methodology for extraction of mechanical parameters at the molecular and supramolecular scale requires special considerations regarding design of mechanical test apparatus, sample preparation and testing, data analysis, and interpretation of X-ray structural information in terms of small-scale mechanics. In this chapter, this methodology is described using as a case study the deformation mechanisms at the fibrillar and mineral particle level in cortical bone. Following a description of the sample preparation, testing, and analysis procedures for bone in general, two applications of the method-to understand fibrillar-level mechanics in tension and bending in a mouse model of rachitic disease-are presented, together with a discussion of how to relate in situ scattering and diffraction data acquired during mechanical testing to nanostructural models for deformation of biomineralized composites.


Assuntos
Colágenos Fibrilares/ultraestrutura , Animais , Fenômenos Biomecânicos , Fêmur/fisiologia , Fêmur/ultraestrutura , Camundongos , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Porosidade , Espalhamento a Baixo Ângulo , Síncrotrons , Resistência à Tração , Difração de Raios X
12.
J Bone Miner Res ; 27(4): 876-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22161748

RESUMO

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease.


Assuntos
Osso e Ossos/fisiopatologia , Osso e Ossos/ultraestrutura , Calcificação Fisiológica/fisiologia , Elétrons , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X , Nanoestruturas/ultraestrutura , Síncrotrons , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos/fisiologia , Osso e Ossos/diagnóstico por imagem , Etilnitrosoureia , Raquitismo Hipofosfatêmico Familiar/patologia , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/química , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Fenótipo , Radiografia , Espalhamento a Baixo Ângulo , Estresse Mecânico , Resistência à Tração/fisiologia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA