Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Trop Med ; 2024: 4123543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318417

RESUMO

Elimination of vector mosquito larvae and their breeding environments is an effective strategy in dengue disease control. Present study examined larval density and water quality in breeding habitats and container preference of dengue vectors Ae. aegypti and Ae. albopictus. Larval surveys were conducted monthly in urban, semiurban, and rural sites in Kurunegala, Sri Lanka, from January 2019 to December 2021. Larval densities were recorded under the following three categories: type of container (16 types), type of material (6 types), and location (indoor/outdoor). Breeding preference ratios (BPRs) were calculated using Index of Available Containers and the Index of Contribution to Breeding Sites. Out of 19,234 wet containers examined, larval stages were found in 1,043 habitats. Ae. albopictus larvae were in all three areas whereas Ae. aegypti larvae were restricted to urban areas. Highest number of wet containers and highest positivity were reported from urban followed by semiurban. In general, discarded nondegradable items were the most frequent and mostly positive breeding sites. For Ae. aegypti, the most preferred breeding sites were gutters and concrete slabs. Ae. albopictus mostly preferred concrete slabs in urban areas and tyres in semiurban and rural areas. Material types such as rubber and concrete were mostly preferred by Ae. aegypti whereas ceramic was preferred by Ae. albopictus. Although plastic was the most available material type in all study sites, preference to plastic was low except for urban Ae. albopictus. Both species preferred urban indoor breeding habitats although outdoor breeding was preferred by Ae. albopictus in rural areas. Larval densities of Ae. aegypti and semiurban Ae. albopictus significantly correlated with the BPR of the container type and material type. Dengue vector larvae were found in a 6.7-9.4 pH range. Total dissolved solids and alkalinity positively correlated with preference. Information generated can be successfully used in waste management and public education for effective vector control.

2.
Sci Rep ; 14(1): 1988, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263389

RESUMO

Insect Growth Regulator (IGR) novaluron is an alternative to synthetic neuro-inhibitory insecticides. Present study was designed to assess appropriate dosages of novaluron for dengue vector control. Larvae of Aedes aegypti and Ae. albopictus were exposed to a concentration series of novaluron (Rimon EC10) for two fixed exposure periods of 7-days and 14-days to determined LC50 and LC99 values. Inhibition of adult emergence (IE50 and IE99) was determined by a 14-day exposure. Semi-field experiments were conducted by exposing cohorts of Ae. aegypti larvae to IE99, 2 × IE99 and 10 × IE99 novaluron concentrations in water storage buckets (10 L) and plastic barrels (200 L). For the 7-day exposure, LC50 values were 0.047-0.049 ppm and LC99 were 0.144-0.151 ppm. For 14-day exposure, these values were 0.002-0.005 ppm and 0.006-0.01 ppm respectively. For both species, IE99 was 0.001 ppb under semi-field conditions, and was effective for nearly 2 months. Novaluron concentration 0.01 ppb was effective up to 3 months, with an IE of 89-95%. Authorities should critically review a reduction of the presently recommended field dosage of 200 ppm novaluron by × 100 or more. This would provide the same efficacy but mitigate environmental pollution, development of vector resistance, and financial losses.


Assuntos
Aedes , Dengue , Compostos de Fenilureia , Animais , Mosquitos Vetores , Hormônios Juvenis , Larva
3.
Environ Pollut ; 341: 122904, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951528

RESUMO

Abundant residues of tetracyclines in animal manures and manure-derived organic fertilizers can pose a substantial risk to environments. However, our knowledge on the residual levels and potential risk of tetracyclines and their transformation products (TPs) in manure and manure-derived organic fertilizers produced by different composting treatments is still limited. Herein, the occurrence and distribution of four veterinary tetracyclines (tetracycline, oxytetracycline, chlortetracycline, and doxycycline) and ten of their TPs were investigated in paired samples of fresh manure and manure-derived organic fertilizers. Tetracyclines and TPs were frequently detected in manure and manure-derived organic fertilizer samples in ranging from 130 to 118,137 µg·kg-1 and 54.6 to 104,891 µg·kg-1, respectively. Notably, the TPs concentrations of tetracycline and chlortetracycline were comparable to those of the parent compounds, with 4-epimers being always dominant and retained antibacterial potency. Based on paired-sampling strategy, the removal efficiency of tetracyclines and TPs in thermophilic composting was higher than that in manure storage. Toxicological data in the soil environment and the data derived from equilibrium partitioning method, indicated that tetracyclines and some TPs like 4-epitetracycline, 4-epichlortetracycline and isochlortetracycline could pose median to high ecological risk to terrestrial organisms. Total concentrations of TPs in manure-derived organic fertilizers were significantly correlated with the absolute abundance of tet(X) family genes, which provide evidence to evaluate the effects of TPs on the levels of antibiotic resistance in the environment. Among them, the 4-epitetracycline could pose ecological risk and retain antibacterial potency. Our findings emphasize the importance of monitoring and controlling the prevalence of tetracyclines and their TPs in livestock-related environments.


Assuntos
Clortetraciclina , Compostagem , Animais , Tetraciclinas/química , Tetraciclina , Esterco , Fertilizantes , Antibacterianos , Solo/química
4.
J Trop Med ; 2022: 4494660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605885

RESUMO

Dengue is an important vector-borne disease transmitted by the mosquitoes Aedes aegypti and Ae. albopictus. In the absence of an effective vaccine, vector control has become the key intervention tool in controlling the disease. Vector densities are significantly affected by the changing weather patterns of a region. The present study was conducted in three selected localities, i.e., urban Bandaranayakapura, semiurban Galgamuwa, and rural Buluwala in the Kurunegala district of Sri Lanka to assess spatial and temporal distribution of dengue vector mosquitoes and to predict vector prevalence with respect to changing weather parameters. Monthly ovitrap surveys and larval surveys were conducted from January to December 2019 and continued further in the urban area up to December 2021. Aedes aegypti was found moderately in the urban area and to a lesser extent in semiurban but not in the rural area. Aedes albopictus had the preference for rural over urban areas. Aedes aegypti preferred indoor breeding, while Ae. albopictus preferred both indoor and outdoor. For Ae. albopictus, ovitrap index (OVI), premise index (PI), container index (CI), and Breteau index (BI) correlated with both the rainfall (RF) and relative humidity (RH) of the urban site. Correlations were stronger between OVI and RH and also between BI and RF. Linear regression analysis was fitted, and a prediction model was developed using BI and RF with no lag period (R 2 (sq) = 86.3%; F = 53.12; R 2 (pred) = 63.12%; model: Log10 (BI) = 0.153 + 0.286 ∗ Log10 (RF); RMSE = 1.49). Another prediction model was developed using OVI and RH with one month lag period (R 2 (sq) = 70.21%; F = 57.23; model: OVI predicted = 15.1 + 0.528 ∗ Lag 1 month RH; RMSE = 2.01). These two models can be used to monitor the population dynamics of Ae. albopictus in urban settings to predict possible dengue outbreaks.

5.
Parasit Vectors ; 14(1): 493, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565445

RESUMO

BACKGROUND: Aedes aegypti and Ae. albopictus are important vectors of human diseases such as dengue, chikungunya, and zika. In Sri Lanka, they have been responsible for transmitting dengue virus. One of the most important parameters influencing the likelihood of arbovirus transmission is the age structure of the mosquito population. However, mosquito age is difficult to measure with accuracy. This study aims to construct multivariate calibration models using the transcriptional abundance of three age-responsive genes: Ae15848 (calcium-binding protein), Ae8505 (structural component of cuticle), and Ae4274 (fizzy cell cycle/cell division cycle 20). METHODS: The transcriptional age-grading technique was applied to determine the chronological age of Ae. aegypti and Ae. albopictus female mosquito populations from Sri Lanka using the age-responsive genes Ae15848, Ae8505, and Ae4274. Furthermore, Ae. aegypti samples obtained from colonies reared at two temperatures (23 and 27 °C) were used to investigate the influence of temperature on this age-grading technique. Expression levels of these three genes were quantified using reverse transcription qualitative PCR (qRT-PCR), and results were normalized against the housekeeping gene ribosomal gene S17 (RpS17). RESULTS: The expression of Ae15848 and Ae8505 decreased with the age of mosquitoes and showed the most significant and consistent change while expression of Ae4274 increased with age. The multivariate calibration models showed > 80% correlation between expression of these age-responsive genes and the age of female mosquitoes at both temperatures. At 27 °C the accuracy of age predictions using the models was 2.19 (± 1.66) days and 2.58 (± 2.06) days for Ae. aegypti and Ae. albopictus females, respectively. The accuracy of the model for Ae. aegypti at 23 °C was 3.42 (± 2.74) days. CONCLUSIONS: An adult rearing temperature difference of 4 °C (23-27 °C) did not significantly affect the age predictions. The calibration models created during this study could be successfully used to estimate the age of wild Ae. aegypti and Ae. albopictus mosquitoes from Sri Lanka.


Assuntos
Aedes/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Mosquitos Vetores/crescimento & desenvolvimento , Aedes/genética , Aedes/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Sri Lanka , Temperatura
6.
PLoS One ; 16(9): e0256819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529694

RESUMO

Phlebotomus argentipes is the vector of Leishmania donovani which causes the disease leishmaniasis, a neglected tropical disease and a growing health problem in Sri Lanka. A proper understanding of the population genetic structure of sand fly vectors is considered important prior to planning and implementation of a successful vector control program. Thus, the present study was conducted to determine the population genetic structure of sand fly vectors in Sri Lanka. Two mitochondrial genes namely Cytochrome c oxidase subunit 1 (Cox 1) and Cytochrome b (Cytb), and the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA were used for molecular characterization. Analyses included maximum likelihood method, network analysis and DNA polymorphisms. The outcome revealed unique sequences of all genomic regions studied except the cox 1 gene had a relationship with sand flies isolated previously from Sri Lanka, India and Israel and cytb gene of 4 sand flies that aligned with those isolated earlier from Sri Lanka and 3 from Madagascar. Furthermore, cox 1 gene and ITS 2 region analyses based on FST values indicated a possible gene flow between the study sites whereas cytb gene analysis favoured the existence of genetically distinct populations of P. argentipes in each of the study sites. Poor population differentiation of P. argentipes, a possible consequence of a gene flow, is indeed of concern due to the risk imposed by promoting the spread of functionally important phenotypes such as insecticide resistance across the country, making future vector control efforts challenging.


Assuntos
DNA Ribossômico , Insetos Vetores/genética , Leishmaniose Visceral/epidemiologia , Phlebotomus/genética , Animais , Variação Genética , Sri Lanka/epidemiologia
7.
Parasit Vectors ; 13(1): 246, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404115

RESUMO

BACKGROUND: Leishmania donovani-induced and sand fly-transmitted leishmaniasis is a growing health problem in Sri Lanka. Limited knowledge on biological and behavioral characteristics of probable vector Phlebotomus argentipes hinders disease control. Here, insecticide susceptibility patterns of P. argentipes were investigated with exploration of probable underlying resistance mechanisms. METHODS: Adult sand flies were collected using standard cattle baited net traps and CDC light traps from selected sites in four districts. Adult F1 progeny of P. argentipes were exposed to different concentrations of DDT, malathion, deltamethrin and propoxur using WHO susceptibility bioassay kits. Post-1-h knockdown and post-24-h mortality were recorded and analyzed. Metabolic enzyme activity and the sensitivity of the acetylcholinesterase target-site were determined by biochemical assays using wild-caught flies. Extracted fly DNA samples were tested for the presence of knockdown-resistance (kdr) type mutations. RESULTS: The LC100 values for DDT, malathion, propoxur and deltamethrin were 0.8-1.5%, 0.9-2.0%, 0.017-0.03% and 0.007% respectively. Insecticide-susceptibility levels were higher than the discriminating dosages established for Aedes mosquitoes, except for malathion. The lowest susceptibility levels (except for deltamethrin) were detected in the Mamadala population, whereas the highest levels were detected in the Mirigama population. The percentage of knocked-down sand flies was < 75% at any tested concentration, including those, which exhibited 100% mortality after 24 h. Elevated activity levels of glutathione S-transferase (3%, 7%, 12.5% and 14%) and esterase (2%, 5%, 5.5% and 6.5%) were detected in flies that originated from Mirigama, Pannala, Thalawa and Mamadala respectively, while monooxygenase quantities remained below the cut-off level. Ten to 34.5% of flies were heterozygous for acetylcholinesterases target-site insensitivity, associated with organophosphate and carbamate resistance. Pyrethroid-resistance-associated L1014F kdr-type mutation in the voltage gated sodium channel gene was detected in 30/53 flies. CONCLUSIONS: Populations of P. argentipes in Sri Lanka are largely susceptible to common insecticides, except for malathion (used extensively in the past for malaria control). Their insecticide susceptibility appears negatively associated with past malaria endemicity of the study sites, with signs of early insecticide tolerance. Presence of insecticide target site insensitivity in a notable proportion of flies and enhanced insecticide metabolizing enzyme activities imply potential future challenges for leishmaniasis control, with a call for urgent proactive measures for its containment.


Assuntos
Insetos Vetores , Inseticidas , Phlebotomus , Acetilcolinesterase/metabolismo , Animais , Bovinos , Feminino , Glutationa Transferase/metabolismo , Insetos Vetores/enzimologia , Insetos Vetores/genética , Resistência a Inseticidas/genética , Inseticidas/classificação , Oxigenases de Função Mista/metabolismo , Mutação , Phlebotomus/enzimologia , Phlebotomus/genética , Piretrinas , Sri Lanka
8.
Parasit Vectors ; 12(1): 310, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227020

RESUMO

BACKGROUND: The tropical bed bug, Cimex hemipterus, is a serious indoor public health pest in tropical regions causing intense physical discomfort and mental distress to humans. At present, the application of insecticides is the major control strategy. The present study was designed to evaluate the development of resistance and resistance mechanisms in Cimex hemipterus from Kandy district, Sri Lanka. METHODS: The resistance status of the collected bed bugs was determined against the discriminative dosages of DDT, malathion, propoxur, deltamethrin and permethrin by conducting bioassays according to World Health Organization guidelines. Activities of insecticide metabolizing enzymes, i.e. esterases, glutathione S-transferases (GST) and monooxygenases, and the insensitivity of organophosphate/carbamate target site acetylcholinesterase (AChE), were evaluated by biochemical assays. Regions of the gene of the pyrethroid/DDT target site, the voltage-gated sodium channel regulatory protein (VGSC), were sequenced for possible kdr mutations. RESULTS: Survival percentages of bed bug population were 71, 68 and 51% for DDT, malathion and propoxur respectively. KT50 and KT90 values, calculated using log-probit mortality curves for deltamethrin were 62.55 and 123.96 h, respectively. These values were much higher for permethrin where KT50 was 201.10 h and the KT90 was beyond the detectable range. Results were compared with previous values reported for the same population in 2002. Resistance to propoxur has increased significantly from 11 to 51% with about a 20-fold increase in the number of individuals with elevated esterase mechanism. No significant change has occurred in malathion and DDT resistance, in GST and monooxygenase activities, and in AChE sensitivity for the past 14 years. Six kdr associated mutations (Y/L995H, V1010L, I1011F, L1014F, V1016E, L1017F/S) and a non-kdr associated mutation (A1007S mutation) were found from the α-region of the VGSC gene. Out of the kdr type mutations, only L1014F has been reported previously form C. hemipterus while the others have been reported from other insects. CONCLUSIONS: The bed bug population has developed high resistance to propoxur with increased esterase activities. KT50 for deltamethrin and permethrin has increased 125- and 20-fold, respectively, over the period 2002 to 2016. To the authors' knowledge, this is the first time that the possible involvement of a kdr type mutation in developing pyrethroid resistance in C. hemipterus has been shown in Sri Lanka.


Assuntos
Percevejos-de-Cama/genética , Genes de Insetos , Resistência a Inseticidas/genética , Inseticidas , Mutação , Animais , Percevejos-de-Cama/enzimologia , Bioensaio , Esterases/metabolismo , Malation , Permetrina , Propoxur , Sri Lanka
9.
Malar J ; 17(1): 271, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029664

RESUMO

BACKGROUND: Although Sri Lanka is considered as a malaria-free nation, the threat of re-emergence of outbreaks still remains due to the high prevalence and abundance of malaria vectors. Analysis of population genetic structure of malaria vectors is considered to be one of the vital components in implementing successful vector control programmes. The present study was conducted to determine the population genetic structure of three abundant malaria vectors; Anopheles subpictus sensu lato (s.l.), Anopheles peditaneatus and Anopheles vagus from five administrative districts in two climatic zones; intermediate zone (Badulla and Kurunegala districts) and dry zone (Ampara, Batticoloa and Jaffna districts) of Sri Lanka using the mitochondrial gene, cytochrome c oxidase subunit I (COI). METHODS: Adult mosquitoes of An. subpictus s.l., An. peditaeniatus, and An. vagus were collected from five study sites located in five districts using cattle baited traps and backpack aspirators. Representative samples of each species that were morphologically confirmed were selected from each locality in generating COI sequences (> 6 good quality sequences per species per locality). RESULTS: Anopheles subpictus s.l. specimens collected during the study belonged to two sibling species; An. subpictus 'A' (from all study sites except from Jaffna) and An. subpictus 'B' (only from Jaffna). The results of haplotype and nucleotide diversity indices showed that all the three species are having high genetic diversity. Although a high significant pairwise difference was observed between An. subpictus 'A' and 'B' (Fst> 0.950, p < 0.05), there were no significant genetic population structures within An. peditaeniatus, An. vagus and An. subpictus species A (p > 0.05), indicating possible gene flow between these populations. CONCLUSIONS: Gene flow among the populations of An. peditaeniatus, An. vagus and An. subpictus species A was evident. Application of vector control measures against all mosquito species must be done with close monitoring since gene flow can assist the spread of insecticide resistance genes over a vast geographical area.


Assuntos
Anopheles/genética , Variação Genética , Proteínas de Insetos/genética , Mosquitos Vetores/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Malária , Proteínas Mitocondriais/genética , Sri Lanka
10.
Parasit Vectors ; 10(1): 230, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490339

RESUMO

BACKGROUND: Wolbachia are a group of maternally inherited intracellular bacteria known to be widespread among arthropods. Infections with Wolbachia cause declines of host populations, and also induce host resistance to a wide range of pathogens. Over the past few decades, researchers were curious to use Wolbachia as a biological tool to control mosquito vectors. During the present study, assessment of the prevalence of Wolbachia infections among wild mosquito populations in Sri Lanka where mosquito-borne diseases are a major health concern, was carried out for the first time. DNA was extracted from the abdomens of mosquitoes, collected from seven provinces, and screened for the presence of Wolbachia by PCR using wsp and groE primers. Group-specific and strain-specific primers were used to classify Wolbachia into the supergroups A and B, and into the strains Mel, AlbA and Pip. RESULTS: A total of 330 individual mosquitoes belonging to 22 species and 7 genera were screened. Eighty-seven mosquitoes (26.36%) belonging to four species (i.e. Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Mansonia uniformis) were positive for Wolbachia infections. Primary vector of the dengue fever, Ae. aegypti was negative for Wolbachia infections while the secondary vector, Ae. albopictus, showed a very high infection rate. The filarial vector C. quinquefasciatus had a relatively high rate of infection. Japanese encephalitis vectors C. gelidus and C. triteaneorynchus, and the Anopheles vectors of malaria were negative for Wolbachia infections. Nine sequences of Wolbachia-positive PCR products were deposited in the GenBank and compared with other available data. Aedes albopictus was infected with both Wolbachia strains A (AlbA) and B (Pip) supergroups. Phylogenetic analysis of the wsp sequences showed two major branches confirming identities obtained from the PCR screening with strain-specific primers. CONCLUSION: Wolbachia infections were found only among four mosquito species in Sri Lanka: Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Mansonia uniformis. Sequence data showed high haplotype diversity among the Wolbachia strains.


Assuntos
Culicidae/microbiologia , Mosquitos Vetores/microbiologia , Wolbachia/classificação , Wolbachia/isolamento & purificação , Aedes/microbiologia , Animais , Anopheles/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Chaperonina 60/genética , Culex/microbiologia , Filogenia , Sri Lanka , Wolbachia/genética
11.
Parasit Vectors ; 8: 327, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071055

RESUMO

BACKGROUND: The identification of species B and E in the Anopheles culicifacies complex in the Indian subcontinent has been based on Y-chromosome karyotype. Since no detectable variations were previously found in DNA markers commonly used for sibling species identification, further molecular characterization using cytochrome oxidase subunit I (COI) and microsatellite markers was carried out on Y-chromosome karyotyped Anopheles culicifacies specie B and E from Unnichchai, Kallady and Ranawarunawa in Sri Lanka. FINDINGS: COI sequence analysis (n = 22) revealed the presence of nine unique haplotypes with six in each species. Three haplotypes were shared by both species. The two sibling species had a pairwise FST value of 1.338 (p < 0.05) with the number of migrants (Nm) value <1. The genetic structure analysis resulted in two genetic clusters not 100% associated with karyotypes. While none of the species B were incorrectly assigned two were inconclusive. Five out of 26 specimens karyotyped as species E were incorrectly assigned, while further 9 were inconclusive. CONCLUSIONS: The new molecular data support the existence of two genetically different populations of the Culicifacies Complex in Sri Lanka that are not associated with the Y-chromosome karyotype. Detailed analysis with more microsatellite markers and assortative mating experiments are needed to establish the presence of the two genetically distinct populations and relate them to Y-chromosome morphology.


Assuntos
Anopheles/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Repetições de Microssatélites , Animais , Anopheles/classificação , Anopheles/enzimologia , Genótipo , Haplótipos , Insetos Vetores/classificação , Insetos Vetores/enzimologia , Malária/transmissão , Sri Lanka
12.
Trop Med Health ; 39(2): 47-52, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22028610

RESUMO

Unprecedented incidences of dengue have been reported in Sri Lanka in recent years. The district of Batticaloa, which was devastated by the 2004 Asian tsunami, is one of the districts affected by dengue. One option to curtail this disease is to implement appropriate vector control measures. A nine-month study was carried out within the Batticaloa Municipal Council limit from April to December 2008. Larval collections were conducted fortnightly using conventional ovitraps for nine months covering the dry and wet seasons. Ovitraps (indoor and outdoor) were placed in 15 randomly selected houses. The collected larvae were brought to the laboratory and reared under laboratory conditions. The larval forms and emerged adults were identified on the basis of reported morphological descriptions. The identified adults of 2-3 d old were exposed to common insecticides following the WHO protocol. During the study period, a total of 10,685 Aedes aegypti and Ae. albopictus mosquitoes were collected, with the former constituting 57% of the total sample. Both species were collected from indoor and outdoor ovitraps, and their prevalence was recorded throughout the study period. A seasonal shift was observed in the density, with Ae. aegypti predominating during the dry season and Ae. albopictus during the wet season. Both species were highly resistant to 4% DDT and susceptible to 0.25% permethrin. The continuous presence of potential dengue vectors may have contributed to the dengue prevalence in the district. Since both species can oviposit in indoor and outdoor ovitraps, public awareness and participation should be promoted in the vector control programme of the Ministry of Health along with continuous vector surveillance.

13.
Science ; 330(6000): 88-90, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20929811

RESUMO

The mosquito Culex quinquefasciatus poses a substantial threat to human and veterinary health as a primary vector of West Nile virus (WNV), the filarial worm Wuchereria bancrofti, and an avian malaria parasite. Comparative phylogenomics revealed an expanded canonical C. quinquefasciatus immune gene repertoire compared with those of Aedes aegypti and Anopheles gambiae. Transcriptomic analysis of C. quinquefasciatus genes responsive to WNV, W. bancrofti, and non-native bacteria facilitated an unprecedented meta-analysis of 25 vector-pathogen interactions involving arboviruses, filarial worms, bacteria, and malaria parasites, revealing common and distinct responses to these pathogen types in three mosquito genera. Our findings provide support for the hypothesis that mosquito-borne pathogens have evolved to evade innate immune responses in three vector mosquito species of major medical importance.


Assuntos
Culex/genética , Culex/imunologia , Genes de Insetos , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Insetos Vetores/genética , Insetos Vetores/imunologia , Aedes/genética , Aedes/imunologia , Aedes/microbiologia , Aedes/parasitologia , Animais , Anopheles/genética , Anopheles/metabolismo , Anopheles/microbiologia , Anopheles/parasitologia , Arbovírus/imunologia , Arbovírus/patogenicidade , Arbovírus/fisiologia , Bactérias/imunologia , Bactérias/patogenicidade , Evolução Biológica , Culex/microbiologia , Culex/parasitologia , Ecossistema , Filarioidea/imunologia , Filarioidea/patogenicidade , Filarioidea/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Interferência de RNA , Transcrição Gênica , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia
14.
Insect Biochem Mol Biol ; 38(1): 113-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18070670

RESUMO

Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes. Here, we report the presence of 235 members of the cytochrome P450, glutathione transferase and carboxy/cholinesterase families in Ae. aegypti. This gene count represents an increase of 58% and 36% compared with the fruitfly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. The expansion is not uniform within the gene families. Secure orthologs can be found across the insect species for enzymes that have presumed or proven biosynthetic or housekeeping roles. In contrast, subsets of these gene families that are associated with general xenobiotic detoxification, in particular the CYP6, CYP9 and alpha esterase families, have expanded in Ae. aegypti. In order to identify detoxification genes associated with resistance to insecticides we constructed an array containing unique oligonucleotide probes for these genes and compared their expression level in insecticide resistant and susceptible strains. Several candidate genes were identified with the majority belonging to two gene families, the CYP9 P450s and the Epsilon GSTs. This 'Ae. aegypti Detox Chip' will facilitate the implementation of insecticide resistance management strategies for arboviral control programmes.


Assuntos
Aedes/genética , Genoma de Inseto , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Animais , Carboxilesterase/genética , Colinesterases/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Glutationa Transferase/genética , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA