Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3245-3250, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057961

RESUMO

The generation of photon pairs from nanoscale structures with high rates is still a challenge for the integration of quantum devices, as it suffers from parasitic signals from the substrate. In this work, we report type-0 spontaneous parametric down-conversion at 1550 nm from individual bottom-up grown zinc-blende GaAs nanowires with lengths of up to 5 µm and diameters of up to 450 nm. The nanowires were deposited on a transparent ITO substrate, and we measured a background-free coincidence rate of 0.05 Hz in a Hanbury-Brown-Twiss setup. Taking into account transmission losses, the pump fluence, and the nanowire volume, we achieved a biphoton generation of 60 GHz/Wm, which is at least 3 times higher than that of previously reported single nonlinear micro- and nanostructures. We also studied the correlations between the second-harmonic generation and the spontaneous parametric down-conversion intensities with respect to the pump polarization and in different individual nanowires.

2.
ACS Nano ; 17(7): 6985-6997, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971128

RESUMO

A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary MxGe1-xTe colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn-Ge-Te quantum dots. Full chemical control of Sn-Ge-Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn-Ge-Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn-Ge-Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn-Ge-Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn-Ge-Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices.

3.
ACS Photonics ; 9(7): 2193-2203, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35880072

RESUMO

Nonlinear crystals that have a noncentrosymmetric crystalline structure, such as lithium niobate (LiNbO3) and barium titanate (BaTiO3) exhibit nonzero second-order tensor susceptibilities (χ(2)) and linear electro-optic coefficients (r ij ). The constraints associated with top-down nanofabrication methods have led to bottom up approaches to harness the strong nonlinearities and electro-optical properties. Here, we present an overview of photonic assemblies made of randomly oriented noncentrosymmetric nanocrystals via bottom-up fabrication methods. In this configuration, nanocrystals can form objects with tunable dimensions, increased complexity, and a great span of symmetry level, ranging from thin layers to spheres. At the same time, according to their shape, photonic assemblies may support optical modes, that is, Mie or guided, which can tailor linear optical properties and enhance nonlinear and electro-optic responses. As a result, assemblies of noncentrosymmetric nanocrystals can form a disruptive platform to realize photonic integrated devices free of etching process and over large surface areas. Last, we foresee potential applications of noncentrosymmetric nanocrystals in various fields of nano-optics and sensing.

4.
Optica ; 8(5): 674-685, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34239949

RESUMO

Superresolution (SR) optical microscopy has allowed the investigation of many biological structures below the diffraction limit; however, most of the techniques are hampered by the need for fluorescent labels. Nonlinear label-free techniques such as second-harmonic generation (SHG) provide structurally specific contrast without the addition of exogenous labels, allowing observation of unperturbed biological systems. We use the photonic nanojet (PNJ) phenomena to achieve SR-SHG. A resolution of ∼ λ / 6 with respect to the fundamental wavelength, that is, a ∼ 2.3 -fold improvement over conventional or diffraction-limited SHG under the same imaging conditions is achieved. Crucially we find that the polarization properties of excitation are maintained in a PNJ. This is observed in experiment and simulations. This may have widespread implications to increase sensitivity by detection of polarization-resolved SHG by observing anisotropy in signals. These new, to the best of our knowledge, findings allowed us to visualize biological SHG-active structures such as collagen at an unprecedented and previously unresolvable spatial scale. Moreover, we demonstrate that the use of an array of self-assembled high-index spheres overcomes the issue of a limited field of view for such a method, allowing PNJ-assisted SR-SHG to be used over a large area. Dysregulation of collagen at the nanoscale occurs in many diseases and is an underlying cause in diseases such as lung fibrosis. Here we demonstrate that pSR-SHG allows unprecedented observation of changes at the nanoscale that are invisible by conventional diffraction-limited SHG imaging. The ability to nondestructively image SHG-active biological structures without labels at the nanoscale with a relatively simple optical method heralds the promise of a new tool to understand biological phenomena and drive drug discovery.

5.
Adv Sci (Weinh) ; 6(21): 1900974, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728279

RESUMO

The change of optical properties that some usually natural compounds or polymeric materials show upon the application of external stress is named mechanochromism. Herein, an artificial nanomechanical metasurface formed by a subwavelength nanowire array made of molybdenum disulfide, molybdenum oxide, and silicon nitride changes color upon mechanical deformation. The aforementioned deformation induces reversible changes in the optical transmission (relative transmission change of 197% at 654 nm), thus demonstrating a giant mechanochromic effect. Moreover, these types of metasurfaces can exist in two nonvolatile states presenting a difference in optical transmission of 45% at 678 nm, when they are forced to bend rapidly. The wide optical tunability that photonic nanomechanical metasurfaces, such as the one presented here, possess by design, can provide a valuable platform for mechanochromic and bistable responses across the visible and near infrared regime and form a new family of smart materials with applications in reconfigurable, multifunctional photonic filters, switches, and stress sensors.

6.
Nano Lett ; 19(3): 1643-1648, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721072

RESUMO

Photonic materials with tunable and switchable ultraviolet (UV) to high-energy visible (HEV) optical properties may benefit applications such as sensing, high-density optical memory, beam-steering, adaptive optics, and light modulation. Here, for the first time we demonstrate a nonvolatile switchable dielectric metamaterial operating in the UV-HEV spectral range. Nanograting metamaterials in a layered composite of low-loss ZnS/SiO2 and the chalcogenide phase-change medium germanium-antimony-telluride (Ge2Sb2Te5 or GST) exhibit reflection resonances at UV-HEV wavelengths that are substantially modified by light-induced (amorphous-crystalline) phase transitions in the chalcogenide layer. Despite the presence of the lossy GST, resonance quality factors up to Q ∼ 15 are ensured by the transparency (low losses) of ZnS/SiO2 in the UV-HEV spectral range and values of Q increase as the refractive index of Ge2Sb2Te5 decreases, upon crystallization. Notably, however, this switching leaves resonance spectral positions unchanged.

7.
Adv Mater ; 31(1): e1804801, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30398682

RESUMO

Electrostriction is a property of all naturally occurring dielectrics whereby they are mechanically deformed under the application of an electric field. It is demonstrated here that an artificial metamaterial nanostructure comprising arrays of dielectric nanowires, made of silicon and indium tin oxide, is reversibly structurally deformed under the application of an electric field, and that this reconfiguration is accompanied by substantial changes in optical transmission and reflection, thus providing a strong electro-optic effect. Such metamaterials can be used as the functional elements of electro-optic modulators in the visible to near-infrared part of the spectrum. A modulator operating at 1550 nm with effective electrostriction and electro-optic coefficients of order 10-13 m2 V-2 and 10-6 m V-1 , respectively, is demonstrated. Transmission changes of up to 3.5% are obtained with a 500 mV control signal at a modulation frequency of ≈6.5 MHz. With a resonant optical response that can be spectrally tuned by design, modulators based on the artificial electrostrictive effect may be used for laser Q-switching and mode-locking among other applications that require modulation at megahertz frequencies.

8.
Adv Mater ; 30(14): e1707354, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29484734

RESUMO

Diamond is introduced as a material platform for visible/near-infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light-by-light modulation at few-optical-cycle (6 fs) pulse durations. "Coherent control" of absorption in planar (subwavelength-thickness) materials has emerged recently as a mechanism for high-contrast all-optical gating, with a speed of response that is limited only by the spectral width of the absorption line. It is shown here that a free-standing diamond membrane structured by focused ion beam milling can provide strong, spectrally near-flat absorption over a visible to near-infrared wavelength range that is wide enough (wider than is characteristically achievable in plasmonic metal metasurfaces) to facilitate coherent modulation of ultrashort optical pulses comprising only a few oscillations of electromagnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA