Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963781

RESUMO

Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.


Stress, spicy foods and elevated temperatures can all trigger specialized gland cells to move water to the skin ­ in other words, they can make us sweat. This process is one of the most important ways by which our bodies regulate their temperature and avoid life-threatening conditions such as heatstroke. Disorders in which this function is impaired, such as AIGA (acquired idiopathic generalized anhidrosis), pose significant health risks. Finding treatments for sweat-related diseases requires a detailed understanding of the molecular mechanisms behind sweating, which has yet to be achieved. Recent research has highlighted the role of two ion channels, TRPV4 and ANO1, in regulating fluid secretion in glands that produce tears and saliva. These gate-like proteins control how certain ions move in or out of cells, which also influences water movement. Once activated by external stimuli, TRPV4 allows calcium ions to enter the cell, causing ANO1 to open and chloride ions to leave. This results in water also exiting the cell through dedicated channels, before being collected in ducts connected to the outside of the body. TRPV4, which is activated by heat, is also present in human sweat gland cells. This prompted Kashio et al. to examine the role of these channels in sweat production, focusing on mice as well as AIGA patients. Probing TRPV4, ANO1 and AQP5 (a type of water channel) levels using fluorescent antibodies confirmed that these channels are all found in the same sweat gland cells in the foot pads of mice. Further experiments highlighted that TRPV4 mediates sweat production in these animals via ANO1 activation. As rodents do not regulate their body temperature by sweating, Kashio et al. explored the biological benefits of having sweaty paws. Mice lacking TRPV4 had reduced sweating and were less able to climb a slippery slope, suggesting that a layer of sweat helps improve traction. Finally, Kashio et al. compared samples obtained from healthy volunteers with those from AIGA patients and found that TRPV4 levels are lower in individuals affected by the disease. Overall, these findings reveal new insights into the underlying mechanisms of sweating, with TRPV4 a potential therapeutic target for conditions like AIGA. The results also suggest that sweating could be controlled by local changes in temperature detected by heat-sensing channels such as TRPV4. This would depart from our current understanding that sweating is solely controlled by the autonomic nervous system, which regulates involuntary bodily functions such as saliva and tear production.


Assuntos
Sudorese , Canais de Cátion TRPV , Temperatura , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Camundongos , Sudorese/fisiologia , Camundongos Knockout , Anoctamina-1/metabolismo , Anoctamina-1/genética , Glândulas Sudoríparas/metabolismo , Humanos , Masculino
2.
Pediatr Blood Cancer ; 71(8): e31030, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733122

RESUMO

Fanconi anemia (FA) is a disease caused by defective deoxyribonucleic acid (DNA) repair that manifests as bone marrow failure, cancer predisposition, and developmental defects. We previously reported that monotherapy with either metformin (MET) or oxymetholone (OXM) improved peripheral blood (PB) counts and the number and functionality of bone marrow hematopoietic stem progenitor cells (HSPCs) number in Fancd2-/- mice. To evaluate whether the combination treatment of these drugs has a synergistic effect to prevent bone marrow failure in FA, we treated cohorts of Fancd2-/- mice and wildtype controls with either MET alone, OXM alone, MET+OXM, or placebo diet from age 3 weeks to 18 months. The OXM treated animals showed modest improvements in blood parameters including platelet count (p = .01) and hemoglobin levels (p < .05). In addition, the percentage of quiescent hematopoietic stem cell (HSC) (LSK [Lin-Sca+c-Kit+]) was significantly increased (p = .001) by long-term treatment with MET alone. The combination of metformin and oxymetholone did not result in a significant synergistic effect in any hematopoietic parameter. Gene expression analysis of liver tissue from these animals showed that some of the expression changes caused by Fancd2 deletion were partially normalized by metformin treatment. Importantly, no adverse effects of the individual or combination therapies were observed, despite the long-term administration. We conclude that androgen therapy is not a contraindication to concurrent metformin administration in clinical trials. HIGHLIGHTS: Long-term coadministration of metformin in combination with oxymetholone is well tolerated by Fancd2-/- mice. Hematopoietic stem cell quiescence in mutant mice was enhanced by treatment with metformin alone. Metformin treatment caused a partial normalization of gene expression in the livers of mutant mice.


Assuntos
Modelos Animais de Doenças , Quimioterapia Combinada , Anemia de Fanconi , Metformina , Oximetolona , Animais , Metformina/farmacologia , Metformina/administração & dosagem , Camundongos , Anemia de Fanconi/tratamento farmacológico , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Camundongos Knockout , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo
4.
Exp Hematol ; : 104191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493949

RESUMO

Erythropoiesis in the adult bone marrow relies on mitochondrial membrane transporters to facilitate heme and hemoglobin production. Erythrocytes in the bone marrow are produced although the differentiation of erythroid progenitor cells that originate from hematopoietic stem cells (HSCs). Whether and how mitochondria transporters potentiate HSCs and affect their differentiation toward erythroid lineage remains unclear. Here, we show that the ATP-binding cassette (ABC) transporter 10 (Abcb10), located on the inner mitochondrial membrane, is essential for HSC maintenance and erythroid-lineage differentiation. Induced deletion of Abcb10 in adult mice significantly increased erythroid progenitor cell and decreased HSC number within the bone marrow (BM). Functionally, Abcb10-deficient HSCs exhibited significant decreases in stem cell potential but with a skew toward erythroid-lineage differentiation. Mechanistically, deletion of Abcb10 rendered HSCs with excess mitochondrial iron accumulation and oxidative stress yet without alteration in mitochondrial bioenergetic function. However, impaired hematopoiesis could not be rescued through the in vivo administration of a mitochondrial iron chelator or antioxidant to Abcb10-deficient mice. Abcb10-mediated mitochondrial iron transfer is thus pivotal for the regulation of physiologic HSC potential and erythroid-lineage differentiation.

5.
Nat Commun ; 15(1): 1852, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424108

RESUMO

Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteostase , Células-Tronco Hematopoéticas/metabolismo , Ciclo Celular , Feto/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo
6.
J Physiol Sci ; 74(1): 9, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331738

RESUMO

There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood. The Thermal Gradient Ring is a new apparatus that allows mice to freely move around the ring floor and not stay in a corner. The system can analyze various factors (e.g., 'Spent time', 'Travel distance', 'Moving speed', 'Acceleration') associated with temperature-dependent behaviors of TRP-deficient mice. For example, the Ring system clearly discriminated differences in temperature-dependent phenotypes between mice with diabetic peripheral neuropathy and TRPV1-/- mice, and demonstrated the importance of TRPV3 in temperature detection in skin. Studies using the Thermal Gradient Ring system can increase understanding of the molecular basis of thermal behaviors in mice and in turn help develop strategies to affect responses to different temperature conditions in humans.


Assuntos
Neuropatias Diabéticas , Canais de Potencial de Receptor Transitório , Humanos , Camundongos , Animais , Temperatura , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Pele/metabolismo
7.
Front Cell Dev Biol ; 11: 1246955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842082

RESUMO

Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.

8.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37649908

RESUMO

Fanconi Anemia (FA) is a disease caused by defective DNA repair which manifests as bone marrow failure, cancer predisposition, and developmental defects. Mice containing inactivating mutations in one or more genes in the FA pathway partially mimic the human disease. We previously reported that monotherapy with either metformin (MET) or oxymetholone (OXM) improved peripheral blood (PB) counts and the number and functionality of bone marrow (BM) hematopoietic stem progenitor cells (HSPCs) number in Fancd2-/- mice. To evaluate whether the combination treatment of these drugs has a synergistic effect to prevent bone marrow failure in FA, we treated cohorts of Fancd2-/- mice and wild-type controls with either MET alone, OXM alone, MET+OXM or placebo diet. Both male and female mice were treated from age 3 weeks to 18 months. The OXM treated animals showed modest improvements in blood parameters including platelet count (p=0.01) and hemoglobin levels (p<0.05). In addition, the percentage of quiescent HSC (LSK) was significantly increased (p=0.001) by long-term treatment with MET alone. However, the absolute number of progenitors, measured by LSK frequency or CFU-S, was not significantly altered by MET therapy. The combination of metformin and oxymetholone did not result in a significant synergistic effect on any parameter. Male animals on MET+OXM or MET alone were significantly leaner than controls at 18 months, regardless of genotype. Gene expression analysis of liver tissue from these animals showed that some of the expression changes caused by Fancd2 deletion were partially normalized by metformin treatment. Importantly, no adverse effects of the individual or combination therapies were observed, despite the long-term administration.

9.
Front Oncol ; 13: 1108430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007148

RESUMO

Fanconi Anemia (FA) is an inherited bone marrow (BM) failure disorder commonly diagnosed during school age. However, in murine models, disrupted function of FA genes leads to a much earlier decline in fetal liver hematopoietic stem cell (FL HSC) number that is associated with increased replication stress (RS). Recent reports have shown mitochondrial metabolism and clearance are essential for long-term BM HSC function. Intriguingly, impaired mitophagy has been reported in FA cells. We hypothesized that RS in FL HSC impacts mitochondrial metabolism to investigate fetal FA pathophysiology. Results show that experimentally induced RS in adult murine BM HSCs evoked a significant increase in mitochondrial metabolism and mitophagy. Reflecting the physiological RS during development in FA, increase mitochondria metabolism and mitophagy were observed in FANCD2-deficient FL HSCs, whereas BM HSCs from adult FANCD2-deficient mice exhibited a significant decrease in mitophagy. These data suggest that RS activates mitochondrial metabolism and mitophagy in HSC.

11.
J Physiol ; 600(19): 4287-4302, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36042566

RESUMO

The transient receptor potential melastatin type 2 (TRPM2) channel is a non-selective cation channel that has high Ca2+ permeability. TRPM2 is sensitive to warm temperatures and is expressed in cells and tissues that are maintained at core body temperature. TRPM2 activity is also regulated by endogenous factors including redox signalling, cytosolic Ca2+ and adenosine diphosphate ribose. As a result of its wide expression and function at core body temperature, these endogenous factors could regulate TRPM2 activity at body temperature under physiological and pathophysiological conditions. We previously reported that cellular redox signalling can lower TRPM2 temperature thresholds, although the mechanism that regulates these thresholds is unclear. Here, we used biochemical and electrophysiological techniques to explore another regulatory mechanism for TRPM2 temperature thresholds that is mediated by TRPM2 phosphorylation. Our results show that: (1) the temperature threshold for TRPM2 activation is lowered by cytosolic Ca2+ ; (2) protein kinase C-mediated phosphorylation of TRPM2 counteracts the effect of cytosolic Ca2+ ; and (3) Thr738 in mouse TRPM2 that lies near the Ca2+ binding site in the cytosolic cleft of the transmembrane domain is a potential phosphorylation site that may be involved in phosphorylation-mediated elevation of TRPM2 thresholds. These findings provide structure-based evidence to understand how temperature thresholds of thermo-sensitive TRP channels (thermo-TRPs) are determined and regulated. KEY POINTS: The transient receptor potential melastatin type 2 (TRPM2) ion channel is temperature-sensitive and Ca2+ -permeable. Endogenous factors and pathways such as redox signalling can regulate TRPM2 activity at body temperature under physiological and pathophysiological conditions. In the present study, we report the novel finding that cytosolic Ca2+ lowers the temperature threshold for TRPM2 activation in a concentration-dependent manner. Protein kinase C-mediated phosphorylation of TRPM2 at amino acid Thr782 elevates the temperature threshold for activation by counteracting the effects of cytosolic Ca2+ . These findings provide structure-based evidence to understand how temperature thresholds of thermo-sensitive TRP channels are determined and regulated.


Assuntos
Canais de Cátion TRPM , Adenosina Difosfato Ribose/metabolismo , Aminoácidos/metabolismo , Animais , Cálcio/metabolismo , Cátions/metabolismo , Camundongos , Fosforilação , Proteína Quinase C/metabolismo , Canais de Cátion TRPM/metabolismo , Temperatura
12.
J Biol Chem ; 298(9): 102271, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850302

RESUMO

Animals detect heat using thermosensitive transient receptor potential (TRP) channels. In insects, these include TRP ankyrin 1 (TRPA1), which in mosquitoes is crucial for noxious heat avoidance and thus is an appealing pest control target. However, the molecular basis for heat-evoked activation has not been fully elucidated, impeding both studies of the molecular evolution of temperature sensitivity and rational design of inhibitors. In TRPA1 and other thermosensitive TRPs, the N-terminal cytoplasmic ankyrin repeat (AR) domain has been suggested to participate in heat-evoked activation, but the lack of a structure containing the full AR domain has hindered our mechanistic understanding of its role. Here, we focused on elucidating the structural basis of apparent temperature threshold determination by taking advantage of two closely related mosquito TRPA1s from Aedes aegypti and Culex pipiens pallens with 86.9% protein sequence identity but a 10 °C difference in apparent temperature threshold. We identified two positions in the N-terminal cytoplasmic AR domain of these proteins, E417 (A. aegypti)/Q414 (C. pipiens) and R459 (A. aegypti)/Q456 (C. pipiens), at which a single exchange of amino acid identity was sufficient to change apparent thresholds by 5 to 7 °C. We further found that the role of these positions is conserved in TRPA1 of a third related species, Anopheles stephensi. Our results suggest a structural basis for temperature threshold determination as well as for the evolutionary adaptation of mosquito TRPA1 to the wide range of climates inhabited by mosquitoes.


Assuntos
Aedes , Repetição de Anquirina , Culex , Temperatura Alta , Canal de Cátion TRPA1 , Aedes/genética , Aedes/fisiologia , Animais , Repetição de Anquirina/genética , Culex/genética , Culex/fisiologia , Domínios Proteicos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética
13.
Curr Opin Neurobiol ; 75: 102591, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728275

RESUMO

The ability to sense external temperature is assumed by somatosensory neurons, in which temperature information is converted to neural activity by afferent input to the central nervous system. Somatosensory neurons consist of various populations with specialized gene expression, including thermosensitive transient receptor potential ion channels (thermo-TRPs). Thermo-TRPs are responsible for thermal transduction at the peripheral ends of somatosensory neurons and over a wide range of temperatures. In this review, we focus on several thermo-TRPs expressed in sensory neurons: TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1. TRPV3, TRPV4, and TRPC5 expressed in non-neuronal cells that are also involved in somatosensation are also discussed, whereas TRPM2 and TRPM8 are involved in thermosensation in the brain.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Células Receptoras Sensoriais , Canais de Cátion TRPC/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório/genética
14.
J Physiol Sci ; 72(1): 11, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35624442

RESUMO

Transient receptor potential (TRP) channels are known as temperature receptors. Each channel has an activation temperature in vitro within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors. However, the role of TRP channels in mouse thermal behavior is not fully understood. We measured thermal behavior using a new type of thermal gradient system, where mice can freely move around the ring floor, thereby avoiding the stereotypical habit that mice have of staying in a corner, as occurs in a rectangular system. With this system, we can also analyze various factors, such as "Spent time," "Travel distance," "Moving speed," and "Acceleration," to provide more accurate information about mouse behaviors. Further analysis using this system would lead to a better understanding of the molecular basis of thermal behaviors in mice, which could help us develop ways of making humans comfortable in different temperature conditions.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Camundongos , Temperatura , Canais de Potencial de Receptor Transitório/genética
15.
Brain Nerve ; 74(2): 127-132, 2022 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-35108676

RESUMO

The ability to sense ambient temperatures is essential for human survival. Sensory nerve endings contain ion channels that are activated by temperature stimuli, which lead to cation influx and depolarization with consequent action potential generation via activation of voltage-gated Na+ channels. Thermosensitive transient receptor potential channels play a key role in cation channels. In addition to sensory neurons, the skin is known to detect ambient temperatures. Furthermore, hypothalamic neurons directly detect brain temperature.


Assuntos
Sensação Térmica , Canais de Potencial de Receptor Transitório , Potenciais de Ação , Humanos , Neurônios
16.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888579

RESUMO

Microglia maintain central nervous system homeostasis by monitoring changes in their environment (resting state) and by taking protective actions to equilibrate such changes (activated state). These surveillance and protective roles both require constant movement of microglia. Interestingly, induced hypothermia can reduce microglia migration caused by ischemia, suggesting that microglia movement can be modulated by temperature. Although several ion channels and transporters are known to support microglia movement, the precise molecular mechanism that regulates temperature-dependent movement of microglia remains unclear. Some members of the transient receptor potential (TRP) channel superfamily exhibit thermosensitivity and thus are strong candidates for mediation of this phenomenon. Here, we demonstrate that mouse microglia exhibit temperature-dependent movement in vitro and in vivo that is mediated by TRPV4 channels within the physiological range of body temperature. Our findings may provide a basis for future research into the potential clinical application of temperature regulation to preserve cell function via manipulation of ion channel activity.


Assuntos
Movimento Celular/fisiologia , Microglia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPV/fisiologia , Temperatura , Canais de Potencial de Receptor Transitório/metabolismo
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924874

RESUMO

Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Lisossomos/metabolismo , Renovação Mitocondrial , Anaerobiose , Animais , Diferenciação Celular , Estrona/metabolismo , Glicólise , Humanos , Tamanho Mitocondrial , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
18.
Blood ; 137(19): 2609-2620, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33657206

RESUMO

Hematopoietic stem cells (HSC) rarely divide, rest in quiescence, and proliferate only upon stress hematopoiesis. The cytokine thrombopoietin (Thpo) has been perplexingly described to induce quiescence and promote self-renewal divisions in HSCs. To clarify the contradictory effect of Thpo, we conducted a detailed analysis on conventional (Thpo-/-) and liver-specific (Thpofl/fl;AlbCre+/-) Thpo-deletion models. Thpo-/- HSCs exhibited profound loss of quiescence, impaired cell cycle progression, and increased apoptosis. Thpo-/- HSCs also exhibited diminished mitochondrial mass and impaired mitochondrial bioenergetics. Abnormal HSC phenotypes in Thpo-/- mice were reversible after HSC transplantation into wild-type recipients. Moreover, Thpo-/- HSCs acquired quiescence with extended administration of a Thpo receptor agonist, romiplostim, and were prone to subsequent stem cell exhaustion during competitive bone marrow transplantation. Thpofl/fl;AlbCre+/- HSCs exhibited similar stem cell phenotypes but to a lesser degree compared with Thpo-/- HSCs. HSCs that survive Thpo deficiency acquire quiescence in a dose-dependent manner through the modification of their metabolic state.


Assuntos
Células-Tronco Hematopoéticas/citologia , Trombopoetina/deficiência , Animais , Apoptose , Ciclo Celular , Autorrenovação Celular , Metabolismo Energético/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores Fc , Receptores de Trombopoetina/agonistas , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais , Trombopoetina/genética , Trombopoetina/farmacologia , Transcriptoma
19.
Mol Cell Endocrinol ; 520: 111089, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227348

RESUMO

The transient receptor potential (TRP) channels constitute a superfamily of large ion channels that are activated by a wide range of chemical, mechanical and thermal stimuli. TRP channels with temperature sensitivity are called thermo-TRPs. They are involved in diverse physiological functions through their detection of external environmental temperature and internal body temperature. Each thermo-TRP has its own characteristic temperature threshold for activation. As a group, they cover temperatures ranging from cold to nociceptive high temperatures. Recently, many studies have identified the functions of thermo-TRPs residing in deep organs where they are exposed to body temperature. Importantly, temperature thresholds of thermo-TRPs can be regulated by physiological factors enabling their function at relatively constant body temperature. Moreover, several thermo-TRPs are reportedly engaged in body temperature regulation. This review will summarize the current understanding of thermo-TRPs, including their roles in thermosensation and functional regulation of physiological responses at body temperature and the regulation of body temperature.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Sensação/fisiologia , Temperatura , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Secreção de Insulina , Córtex Somatossensorial/fisiologia
20.
Sci Rep ; 9(1): 3706, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842533

RESUMO

Masking is a direct behavioral response to environmental changes and plays an important role in the temporal distribution of activity. However, the mechanisms responsible for masking remain unclear. Here we identify thermosensors and a possible neural circuit regulating temperature-dependent masking behavior in mice. Analysis of mice lacking thermosensitive transient receptor potential (TRP) channels (Trpv1/3/4 and Trpm2/8) reveals that temperature-dependent masking is impaired in Trpm2- and Trpm8-null mice. Several brain regions are activated during temperature-dependent masking, including the preoptic area (POA), known as the thermoregulatory center, the suprachiasmatic nucleus (SCN), which is the primary circadian pacemaker, the paraventricular nucleus of the thalamus (PVT), and the nucleus accumbens (NAc). The POA, SCN, PVT are interconnected, and the PVT sends dense projections to the NAc, a key brain region involved in wheel-running activity. Partial chemical lesion of the PVT attenuates masking, suggesting the involvement of the PVT in temperature-dependent masking behavior.


Assuntos
Mascaramento Perceptivo/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Área Pré-Óptica/fisiologia , Núcleo Supraquiasmático/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA