Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069286

RESUMO

Ensuring food and nutritional security of fast-growing population will pose a huge challenge in future. An estimated one-half population who does not go hungry, nonetheless suffers the debilitating effects of unhealthy diets. In view of the nutritional awareness, when the major wheat breeding programs have started shifting to quality, instead of quantity in wheat, the colored wheats give a novel twist of targeting the malnutrition by enhancing the antioxidants such as anthocyanin, carotenoids, flavonoids, polyphenols etc. Moreover, changing consumer demands have picked the trend to prefer a nutritionally balanced diet over the conventional high energy diets and thus, colored wheat has opened up a hidden avenue for providing additional value to the wheat-based products. Besides providing nutrition, these pigments have the potential to replace the synthetic dyes and food colorants prevalent in the market. The review summarizes the genetics and biochemistry of the pigments of colored wheat along with their product development, nutritional status and consumer preference. The review also sheds light on the environmental effect on color accumulation and the effect of increased colorants on other quality traits of wheat.

2.
Front Genet ; 13: 1001904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160017

RESUMO

The high performance and stability of wheat genotypes for yield, grain protein content (GPC), and other desirable traits are critical for varietal development and food and nutritional security. Likewise, the genotype by environment (G × E) interaction (GEI) should be thoroughly investigated and favorably utilized whenever genotype selection decisions are made. The present study was planned with the following two major objectives: 1) determination of GEI for some advanced wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab, India; and 2) selection of the best genotypes with high GPC and yield in various environments. Different univariate [Eberhart and Ruessll's models; Perkins and Jinks' models; Wrike's Ecovalence; and Francis and Kannenberg's models], multivariate (AMMI and GGE biplot), and correlation analyses were used to interpret the data from the multi-environmental trial (MET). Consequently, both the univariate and multivariate analyses provided almost similar results regarding the top-performing and stable genotypes. The analysis of variance revealed that variation due to environment, genotype, and GEI was highly significant at the 0.01 and 0.001 levels of significance for all studied traits. The days to flowering, plant height, spikelets per spike, grain per spike, days to maturity, and 1000-grain weight were specifically affected by the environment, whereas yield was mainly affected by the environment and GEI. Genotypes, on the other hand, had a greater impact on the GPC than environmental conditions. As a result, a multi-environmental investigation was necessary to identify the GEI for wheat genotype selection because the GEI was very significant for all of the evaluated traits. Yield, 1000-grain weight, spikelet per spike, and days to maturity were observed to have positive correlations, implying the feasibility of their simultaneous selection for yield enhancement. However, GPC was observed to have a negative correlation with yield. Patiala was found to be the most discriminating environment for both yield and GPC and also the most effective representative environment for GPC, whereas Ludhiana was found to be the most effective representative environment for yield. Eventually, two NILs (BWL7508, and BWL7511) were selected as the top across all environments for both yield and GPC.

3.
Mol Breed ; 42(11): 67, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313474

RESUMO

Colored wheat has piqued the interest of breeders and consumers alike. The chromosomal segment from 7E of Thinopyrum ponticum, which carries a leaf rust resistant gene, Lr19, has been rarely employed in wheat breeding operations due to its association with the Y gene, which gives a yellow tint to the flour. By prioritizing nutritional content over color preferences, consumer acceptance has undergone a paradigm change. Through marker-assisted backcross breeding, we introduced an alien segment harboring the Y (PsyE1) gene into a high yielding commercial bread wheat (HD 2967) background to generate rust resistant carotenoid biofortified bread wheat. Agro-morphological characterization was also performed on a subset of developed 70 lines having enhanced grain carotene content. In the introgression lines, carotenoid profiling using HPLC analysis demonstrated a considerable increase in ß-carotene levels (up to 12 ppm). Thus, the developed germplasm caters the threat to nutritional security and can be utilized to produce carotenoid fortified wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01338-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA