Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(9): e13352, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960116

RESUMO

A type III secretion system (T3SS) is used by Gram-negative bacterial pathogens to secrete and translocate a battery of proteins, termed effectors, from the bacteria directly into the host cells. These effectors, which are thought to play a key role in bacterial virulence, hijack and modify the activity of diverse host cell organelles, including mitochondria. Mitochondria-the energy powerhouse of the cell-are important cell organelles that play role in numerous critical cellular processes, including the initiation of apoptosis and the induction of innate immunity. Therefore, it is not surprising that pathogenic bacteria use mitochondrially targeted effectors to control host cell death and immunity pathways. Surprisingly, however, we found that despite their importance, only a limited number of type III secreted effectors have been characterised to target host mitochondria, and the mechanisms underlying their mitochondrial activity have not been sufficiently analysed. These include effectors secreted by the enteric attaching and effacing (A/E), Salmonella and Shigella bacterial pathogens. Here we give an overview of key findings, present gaps in knowledge and hypotheses concerning the mode by which these type III secreted effectors control the host and the bacterial cell life (and death) through targeting mitochondria.


Assuntos
Proteínas de Bactérias , Shigella , Bactérias Gram-Negativas , Mitocôndrias , Sistemas de Secreção Tipo III
2.
PLoS Pathog ; 15(6): e1007851, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242273

RESUMO

Enteropathogenic E. coli (EPEC) is an extracellular diarrheagenic human pathogen which infects the apical plasma membrane of the small intestinal enterocytes. EPEC utilizes a type III secretion system to translocate bacterial effector proteins into its epithelial hosts. This activity, which subverts numerous signaling and membrane trafficking pathways in the infected cells, is thought to contribute to pathogen virulence. The molecular and cellular mechanisms underlying these events are not well understood. We investigated the mode by which EPEC effectors hijack endosomes to modulate endocytosis, recycling and transcytosis in epithelial host cells. To this end, we developed a flow cytometry-based assay and imaging techniques to track endosomal dynamics and membrane cargo trafficking in the infected cells. We show that type-III secreted components prompt the recruitment of clathrin (clathrin and AP2), early (Rab5a and EEA1) and recycling (Rab4a, Rab11a, Rab11b, FIP2, Myo5b) endocytic machineries to peripheral plasma membrane infection sites. Protein cargoes, e.g. transferrin receptors, ß1 integrins and aquaporins, which exploit the endocytic pathways mediated by these machineries, were also found to be recruited to these sites. Moreover, the endosomes and cargo recruitment to infection sites correlated with an increase in cargo endocytic turnover (i.e. endocytosis and recycling) and transcytosis to the infected plasma membrane. The hijacking of endosomes and associated endocytic activities depended on the translocated EspF and Map effectors in non-polarized epithelial cells, and mostly on EspF in polarized epithelial cells. These data suggest a model whereby EPEC effectors hijack endosomal recycling mechanisms to mislocalize and concentrate host plasma membrane proteins in endosomes and in the apically infected plasma membrane. We hypothesize that these activities contribute to bacterial colonization and virulence.


Assuntos
Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/microbiologia , Membrana Celular/patologia , Endossomos/microbiologia , Endossomos/patologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/patologia , Células HeLa , Humanos
3.
Cell Mol Gastroenterol Hepatol ; 5(3): 420-421, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29675455
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA