RESUMO
Johne's disease (JD; paratuberculosis) control programs have been regionally implemented across the globe, but few have successfully eradicated the pathogen (Mycobacterium avium ssp. paratuberculosis (MAP)) causing this disease. The limited success may partly be attributed to excluding young stock (calves and replacement heifers or bulls) from testing strategies aimed at identifying MAP-infected cattle. Young stock can shed MAP in feces and can have detectable MAP-specific antibodies in blood, as confirmed in experimentally and naturally infected cattle. Furthermore, MAP transmission causes new infections in young stock. Calves and heifers are often included in JD management strategies on dairy farms but excluded from conventional diagnostic tests due to a presumed lag between infection and detection of MAP shedding and/or MAP-specific serum antibodies. We summarize evidence of MAP shedding early in the course of infection and discuss promising diagnostics, testing and management strategies to support inclusion of young stock in JD control programs. Improvements in fecal Polymerase Chain Reaction, interferon-gamma release assay (IGRA), and enzyme-linked immunosorbent assay (ELISA) enable earlier detection of MAP and specific early immune responses. Studies on IGRA and ELISA have focused on evaluation of new antigens and optimal age of testing. There are new diagnostics, including phage-based tests to detect viable MAP, and gene expression patterns and metabolomics to detect MAP-infected young stock. In addition, refinements in testing and management of calves and heifers may enable reductions in MAP prevalence. We provide recommendations for dairy farmers, researchers, veterinarians, and other stakeholders that may improve JD control programs with an objective to control and potentially eradicate JD. Additionally, we have identified the most pressing gaps in knowledge that currently hamper inclusion of young stock in JD prevention and control programs. In summary, transmission among young stock may cause new MAP infections, and appropriate use of new diagnostic tests, testing and management strategies for young stock may improve the efficacy of JD control programs.
RESUMO
Nocardia cyriacigeorgica causes bovine mastitis, reduces milk quantity and quality, and is often resistant to antimicrobials. Selenomethionine (SeMet) is a form of selenium, which reduces reactive oxygen species (ROS)-mediated apoptosis and intramammary infections. However, the protective effects of SeMet on N. cyriacigeorgica-infected bovine mammary epithelial cells (bMECs) are unclear. The objective of this study was to evaluate whether SeMet mitigated N. cyriacigeorgica-induced inflammatory injury, oxidative damage and apoptosis in bMECs. Cells were cultured with or without being pretreated with 40 µM of SeMet for 12 h, then challenged with N. cyriacigeorgica (multiplicity of infection = 5:1) for 6 h. Although N. cyriacigeorgica was resistant to lincomycin, erythromycin, enrofloxacin, penicillin, amoxicillin, cephalonium, cephalexin, and ceftriaxone, 40 µM SeMet increased cell viability and inhibited lactate dehydrogenase release in infected bMECs. Furthermore, N. cyriacigeorgica significantly induced mRNA production and protein expression of TNF-α, IL-1ß, IL-6, and IL-8 at 6 h. Cell membrane rupture, cristae degeneration and mitochondria swelling were evident with transmission electron microscopy. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activities were down-regulated after 3, 6, or 12 h, whereas malondialdehyde (MDA) and ROS contents were significantly upregulated, with cell damage and apoptosis rapidly evident (the latter increased significantly in a time-dependent manner). In contrast, bMECs pretreated with 40 µM SeMet before infection, SOD, and GSH-px activities were upregulated (p < 0.05); MDA and ROS concentrations were downregulated (p < 0.05), and apoptosis was reduced (p < 0.05). In conclusion, 40 µM SeMet alleviated inflammation, oxidative stress and apoptosis induced by N. cyriacigeorgica in bMECs cultured in vitro.
Assuntos
Apoptose , Células Epiteliais , Glândulas Mamárias Animais , Nocardiose , Nocardia , Estresse Oxidativo , Selenometionina , Animais , Bovinos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nocardia/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Feminino , Selenometionina/farmacologia , Nocardiose/microbiologia , Nocardiose/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Mastite Bovina/microbiologia , Mastite Bovina/metabolismo , Mastite Bovina/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismoRESUMO
Recycled manure solids (RMS) are dried cow dung processed using a manure dewatering machine and subsequently sun-dried to ~ 20% moisture. Benefits of RMS include abundant availability, low cost, and eco-friendliness, but its use as bedding material for cows is hindered by a moisture content that promotes microbial growth. This in vitro study evaluated impacts of calcium hydroxide (CH; 5 and 7.5%) and sodium hydrosulphate (SHS; 6 and 8%), independently and in combinations, at various depths of RMS, on physicochemical and microbial properties. The CH-treated groups had increased pH and reduced moisture on Day 0. Incorporating 7.5% CH + 6% SHS at 15-20 cm, and 7.5% CH + 8% SHS at all depths, effectively suppressed Escherichia coli and Klebsiella spp. Furthermore, a combination of 7.5% CH + 8% SHS at 20 cm inhibited coliform growth, whereas 7.5% CH with 6% SHS inhibited Streptococcus spp. In conclusion, a combination of 7.5% CH with either 6 or 8% SHS at a depth of 15 cm in RMS was particularly effective in controlling environmental mastitis-causing pathogens, specifically E. coli and Klebsiella spp.
RESUMO
Bovine mastitis is an infectious disease that causes substantial economic losses to the dairy industry worldwide. Current antibiotic therapy faces issues of antibiotic misuse and antimicrobial resistance, which has aroused concerns for both veterinary and human medicine. Thus, this study explored the potential of Colo EVs (bovine colostrum-derived extracellular vesicles) to address mastitis. Using LPS-induced murine mammary epithelial cells (HC11), mouse monocyte macrophages (RAW 264.7), and a murine mastitis model with BALB/C mice, we evaluated the safety and efficacy of Colo EVs, in vivo and in vitro. Colo EVs had favorable biosafety profiles, promoting cell proliferation and migration without inducing pathological changes after injection into murine mammary glands. In LPS-induced murine mastitis, Colo EVs significantly reduced inflammation, improved inflammatory scores, and preserved tight junction proteins while protecting milk production. Additionally, in vitro experiments demonstrated that Colo EVs downregulated inflammatory cytokine expression, reduced inflammatory markers, and attenuated NF-κB pathway activation. In summary, we inferred that Colo EVs have promise as a therapeutic approach for mastitis treatment, owing to their anti-inflammatory properties, potentially mediated through the NF-κB signaling pathway modulation.
Assuntos
Colostro , Vesículas Extracelulares , Mastite , Camundongos Endogâmicos BALB C , Nanomedicina , Animais , Vesículas Extracelulares/química , Feminino , Camundongos , Colostro/química , Células RAW 264.7 , Mastite/tratamento farmacológico , Bovinos , Nanomedicina/métodos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , NF-kappa B/metabolismo , Glândulas Mamárias Animais , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos , Mastite Bovina/tratamento farmacológicoRESUMO
BACKGROUND: In China's expanding dairy industry, a lack of oversight regarding antimicrobial use and increasing antimicrobial resistance are evident. Selective treatments of dairy cows for clinical mastitis or dry cow therapy are proposed to promote judicious antimicrobial use without adversely impacting cattle health. These approaches have been successfully implemented on farms in other countries. METHODS: On 28 October 2023, a 2-day in-person seminar was held in Beijing, China, on selective antimicrobial treatments of dairy cows for clinical mastitis or dry cow therapy on large Chinese dairy farms. Concurrently, a qualitative study involving 15 technical managers from the 13 largest Chinese dairy groups used focus group discussions and questionnaires to explore perspectives on selective treatments of dairy cows for clinical mastitis or dry cow therapy. The main outcomes assessed were opinions and concerns regarding implementing selective antimicrobial treatments. RESULTS: Although there was diversity of cognition on AMR and selective treatments, the technical managers were generally positive regarding adoption of selective treatments. However, they expressed a need for more evidence and tools, including anticipated economic impacts, effects of delaying treatment until diagnosis, accurate interpretation of milk recording data, safe use of internal teat sealants, and spread of pathogens. Participants stressed the need for awareness, staff training, farm management, and China-specific standards, suggesting large-scale trials to assess efficacy of selective treatments. CONCLUSION: The findings revealed key challenges and barriers currently impeding selective AMU practices. These insights could inform efforts to promote judicious AMU on farms through targeted treatment regimens, reducing mounting selective pressure driving resistance.
RESUMO
As only 10% of the broiler breeder flock is roosters, their fertility is very important. The rooster sperm plasma membrane has high concentrations of polyunsaturated fatty acids that are sensitive to oxidative stress. Lipid peroxidation can change membrane structure, permeability, and fluidity, adversely affecting the acrosome reaction and fertility. Aging roosters have decreases in sexual behavior, serum androgen concentrations, sperm quantity and quality, and fertility. Low fertility in aging roosters is attributed to an imbalanced testicular oxidant-antioxidant system, with increased reactive oxygen species (ROS) damaging spermatogenic epithelium. However, antioxidant components can enhance antioxidant defenses in aging broiler breeder roosters. Protection against oxidative damage, particularly in the testes, improves reproductive hormone concentrations, testicular histology, sperm membrane function, and mitochondrial activity and thereby improves semen volume, sperm concentration, viability, motility, and sperm polyunsaturated fatty acid content, sperm-egg penetration, fertility, and reproductive performance. This review summarizes antioxidants that could improve fertility and reproductive performance and delay or prevent age-related declines in broiler breeder roosters, with benefits for poultry production.
RESUMO
Klebsiella pneumoniae is a primary cause of clinical mastitis in dairy cows, with prevention being crucial, as treatments often fail due to antimicrobial resistance. Recent studies identified type I fimbrial antigens of K. pneumoniae as promising vaccine candidates, but there are limited research data. In this study, 3 fimbriae genes (fimA, fimC and fimG) were cloned and recombinantly expressed in Escherichia coli and their protective efficacy against K. pneumoniae evaluated in a mouse model. All 3 recombinant fimbriae proteins elicited strong humoral immune responses in mice, significantly increasing IgG, IgG1 and IgG2a. Notably, using a model of mice challenged with an intraperitoneal injection of bacteria, FimG significantly reduced bacterial loads in the spleen and lung, whereas FimA and FimC had limited protection for these organs. Either active or passive immunization with FimG produced substantial protective effects in mice challenged with K. pneumoniae LD100; in contrast, the mortality rate in the FimA-immunized group was similar to that of the control group, whereas FimC had weak protection. We concluded that the FimG recombinant protein vaccine had a favorable protective effect, with potential for immunization against K. pneumoniae mastitis.
Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Proteínas de Fímbrias , Infecções por Klebsiella , Klebsiella pneumoniae , Camundongos Endogâmicos BALB C , Animais , Klebsiella pneumoniae/imunologia , Camundongos , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Proteínas de Fímbrias/imunologia , Proteínas de Fímbrias/genética , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas Recombinantes/imunologia , Fímbrias Bacterianas/imunologia , Imunoglobulina G/sangue , Imunidade HumoralRESUMO
Paratuberculosis or Johne's disease (JD), a chronic granulomatous gastroenteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes huge economic losses and reduces animal welfare in dairy cattle herds worldwide. At present, molecular mechanisms and biological functions involved in immune responses to MAP infection of dairy cattle are not clearly understood. Our purpose was to integrate transcriptomic profiles and competing endogenous RNA (ceRNA) network analyses to identify key messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of peripheral blood mononuclear cells (PBMCs) for MAP infection in dairy cattle. In total, 28 lncRNAs, 42 miRNAs, and 370 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In this regard, we identified 21 hub genes (CCL20, CCL5, CD40, CSF2, CXCL8, EIF2AK2, FOS, IL10, IL17A, IL1A, IL1B, IRF1, MX2, NFKB1, NFKBIA, PTGS2, SOCS3, TLR4, TNF, TNFAIP3, and VCAM1) involved in MAP infection. Furthermore, eight candidate subnets with eight lncRNAs, 29 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 510, 22, and 11 significantly enriched GO terms related to MAP infection in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways related to MAP infection that were enriched included the immune system process, defense response, response to cytokine, leukocyte migration, regulation of T cell activation, defense response to bacterium, NOD-like receptor, B cell receptor, TNF, NF-kappa B, IL-17, and T cell receptor signaling pathways. Contributions of transcriptome profiles from MAP-positive and MAP-negative sample groups plus a ceRNA regulatory network underlying phenotypic differences in the intensity of pathogenicity of JD provided novel insights into molecular mechanisms associated with immune system responses to MAP infection in dairy cattle.
RESUMO
BACKGROUND: Leishmaniasis, caused by Leishmania spp. parasites, is an important zoonotic disease globally, posing severe threats to humans and animals. In the absence of effective vaccines, reliable serological diagnostic methods are critical for disease control. However, the enzyme-linked immunosorbent assay (ELISA) and immunochromatographic assay have limitations due to complexity, time required and/or sensitivity. Therefore, our objective was to develop an accurate, rapid and user-friendly detection method of canine leishmania antibody based on double-antigen sandwich homogeneous chemical luminescence. METHODS: Homogeneous chemiluminescent technology was employed, and expressed recombinant fusion proteins containing full-length K9, K39 and K26 repeat sequences were used as diagnostic antigens. To establish a dual-antigen sandwich serological assay capable of detecting various antibody types, a factorial design was used to optimize concentrations of diagnostic antigen-receptor microspheres and of biotinylated diagnostic antigens, as well as of reaction solution composition and reaction duration. To evaluate and validate this newly developed method, we collected 41 Leishmania-positive serum samples, 30 Leishmania-negative control serum samples and 78 clinical serum samples for which no diagnostic information was available. Comparative analyses were performed using parasitological testing and an indirect ELISA as reference methods, focusing on diagnostic sensitivity and specificity. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the purification of the diagnostic antigens, which exhibited clear bands without impurities. Based on results from the 41 Leishmania-positive samples and 30 Leishmania-negative samples, there was sufficient sensitivity to detect samples diluted up to 256-fold, with analytical specificity of 100%. Overall diagnostic sensitivity was 100% and diagnostic specificity was 93.3%. Diagnostic performance was highly consistent between the newly developed method and the indirect ELISA (Kappa = 0.82, P < 0.01). Testing could be completed within 35 min with the new method CONCLUSIONS: We have developed a novel double-antigen sandwich homogeneous chemical luminescence method to detect canine Leishmania antibodies, with high sensitively and specificity, a short incubation interval and a simple protocol. This streamlined approach not only offers a sensitive and efficient method for clinical diagnosis but also has great potential for use in automated testing.
Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Doenças do Cão , Ensaio de Imunoadsorção Enzimática , Leishmania , Leishmaniose , Sensibilidade e Especificidade , Cães , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Leishmania/imunologia , Leishmaniose/diagnóstico , Leishmaniose/veterinária , Leishmaniose/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Medições Luminescentes/métodos , LuminescênciaRESUMO
Iron overload causes mitochondrial damage, and then activates mitophagy, which may directly trigger and amplify ferroptosis. Our objective was to investigate whether Escherichia coli (E. coli) isolated from clinical bovine mastitis induces ferroptosis in bovine mammary epithelial cells (bMECs) and if so, the underlying regulatory mechanism. E. coli infection caused mitochondrial damage, mitophagy, and ferroptosis. Rapamycin and chloroquine increased and suppressed ferroptosis, respectively, in E. coli-treated bMECs. Moreover, E. coli infection activated the Wnt/ß-catenin pathway, but foscenvivint alleviated it. In conclusion, E. coli infection induced ferroptosis through activation of the Wnt/ß-catenin pathway-promoted mitophagy, and it also suppressed GPX4 expression.
Assuntos
Células Epiteliais , Escherichia coli , Ferroptose , Glândulas Mamárias Animais , Mitofagia , Via de Sinalização Wnt , Animais , Ferroptose/efeitos dos fármacos , Bovinos , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Mitofagia/efeitos dos fármacos , Feminino , Escherichia coli/metabolismo , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/metabolismoRESUMO
Endemic infectious diseases remain a major challenge for dairy producers worldwide. For effective disease control programs, up-to-date prevalence estimates are of utmost importance. The objective of this study was to estimate the herd-level prevalence of bovine leukemia virus (BLV), Salmonella enterica ssp. enterica serovar Dublin (Salmonella Dublin), and Neospora caninum in dairy herds in Alberta, Canada, using a serial cross-sectional study design. Bulk tank milk samples from all Alberta dairy farms were collected 4 times, in December 2021 (n = 489), April 2022 (n = 487), July 2022 (n = 487), and October 2022 (n = 480), and tested for antibodies against BLV, Salmonella Dublin, and N. caninum using ELISA. Herd-level apparent prevalence was calculated as positive herds divided by total tested herds at each time point. A mixed-effect modified Poisson regression model was employed to assess the association of prevalence with region, herd size, herd type, and type of milking system. Apparent prevalence of BLV was 89.4%, 88.7%, 86.9%, and 86.9% in December, April, July, and October, respectively, whereas for Salmonella Dublin apparent prevalence was 11.2%, 6.6%, 8.6%, and 8.5%, and for N. caninum apparent prevalence was 18.2%, 7.4%, 7.8%, and 15.0%. For BLV, Salmonella Dublin, and N. caninum, a total of 91.7%, 15.6%, and 28.1% of herds, respectively, were positive at least once, whereas 82.5%, 3.6%, and 3.0% of herds were ELISA positive at all 4 times. Compared with the north region, central Alberta had a high prevalence (prevalence ratio [PR] = 1.13) of BLV antibody-positive herds, whereas south Alberta had a high prevalence (PR = 2.56) of herds positive for Salmonella Dublin antibodies. Furthermore, central (PR = 0.52) and south regions (PR = 0.46) had low prevalence of N. caninum-positive herds compared with the north. Hutterite colony herds were more frequently BLV positive (PR = 1.13) but less frequently N. caninum-positive (PR = 0.47). Large herds (>7,200 L/d milk delivered â¼>250 cows) were 1.1 times more often BLV positive, whereas small herds (≤3,600 L/d milk delivered â¼≤125 cows) were 3.2 times more often N. caninum positive. For Salmonella Dublin, Hutterite colony herds were less frequently (PR = 0.07) positive than non-colony herds only in medium and large strata but not in small stratum. Moreover, larger herds were more frequently (PR = 2.20) Salmonella Dublin-positive than smaller herds only in non-colony stratum but not in colony stratum. Moreover, N. caninum prevalence was 1.6 times higher on farms with conventional milking systems compared with farms with an automated milking system. These results provide up-to-date information of the prevalence of these infections that will inform investigations of within-herd prevalence of these infections and help in devising evidence-based disease control strategies.
Assuntos
Doenças dos Bovinos , Ensaio de Imunoadsorção Enzimática , Vírus da Leucemia Bovina , Leite , Neospora , Salmonella , Animais , Bovinos , Leite/microbiologia , Prevalência , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Bovinos/epidemiologia , Feminino , Salmonella/isolamento & purificação , Alberta/epidemiologia , Leucose Enzoótica Bovina/epidemiologia , Indústria de Laticínios , Coccidiose/veterinária , Coccidiose/epidemiologia , Salmonelose Animal/epidemiologiaRESUMO
Non-aureus staphylococci (NAS) are an essential group of bacteria causing antimicrobial resistant intramammary infections in livestock, particularly dairy cows. Therefore, bacteriophages emerge as a potent bactericidal agent for NAS mastitis. This study aimed to obtain NAS-specific bacteriophages using bacterial strains isolated from cows with mastitis, subsequently evaluating their morphological, genomic, and lytic characteristics. Four distinct NAS bacteriophages were recovered from sewage or the environment of Chinese dairy farms; PT1-1, PT94, and PT1-9 were isolated using Staphylococcus chromogenes and PT1-4 using Staphylococcus gallinarum. Both PT1-1 (24/54, 44â¯%) and PT94 (28/54, 52â¯%) had broader lysis than PT1-4 (3/54, 6â¯%) and PT1-9 (10/54, 19â¯%), but PT1-4 and PT1-9 achieved cross-species lysis. All bacteriophages had a short latency period and good environmental tolerance, including surviving at pH=4-10 and at 30-60â. Except for PT1-9, all bacteriophages had excellent bactericidal efficacy within 5â¯h of co-culture with host bacteria in vitro at various multiplicity of infection (MOIs). Based on whole genome sequencing, average nucleotide identity (ANI) analysis of PT1-1 and PT94 can be classified as the same species, consistent with whole-genome synteny analysis. Although motifs shared by the 4 bacteriophages differed little from those of other bacteriophages, a phylogenetic tree based on functional proteins indicated their novelty. Moreover, based on whole genome comparisons, we inferred that cross-species lysis of bacteriophage may be related to the presence of "phage tail fiber." In conclusion 4 novel NAS bacteriophages were isolated; they had good biological properties and unique genomes, with potential for NAS mastitis therapy.
Assuntos
Genoma Viral , Mastite Bovina , Esgotos , Staphylococcus , Esgotos/virologia , Esgotos/microbiologia , Animais , Staphylococcus/virologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Bovinos , Feminino , Mastite Bovina/microbiologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Fagos de Staphylococcus/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Filogenia , Genômica , Sequenciamento Completo do GenomaRESUMO
Heme oxygenase HO-1 (HMOX) regulates cellular inflammation and apoptosis, but its role in regulation of autophagy in Mycoplasma bovis infection is unknown. The objective was to determine how the HO-1/CO- Protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Ca2+- transcription factor EB (TFEB) signaling axis induces autophagy and regulates clearance of M. bovis by bovine mammary epithelial cells (bMECs). M. bovis inhibited autophagy and lysosomal biogenesis in bMECs and suppressed HO-1 protein and expression of related proteins, namely nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (keap1). Activation of HO-1 and its production of carbon monoxide (CO) were required for induction of autophagy and clearance of intracellular M. bovis. Furthermore, when HO-1 was deficient, CO sustained cellular autophagy. HO-1 activation increased intracellular calcium (Ca2+) and cytosolic localization activity of TFEB via PERK. Knockdown of PERK or chelation of intracellular Ca2+ inhibited HO-1-induced M. bovis autophagy and clearance. M. bovis infection affected nuclear localization of lysosomal TFEB in the MiT/TFE transcription factor subfamily, whereas activation of HO-1 mediated dephosphorylation and intranuclear localization of TFEB, promoting autophagy, lysosomal biogenesis and autophagic clearance of M. bovis. Nuclear translocation of TFEB in HO-1 was critical to induce M. bovis transport and survival of infected bMECs. Furthermore, the HO-1/CO-PERK-Ca2+-TFEB signaling axis induced autophagy and M. bovis clearance, providing a viable approach to treat persistent M. bovis infections.
Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Cálcio , Núcleo Celular , Retículo Endoplasmático , Células Epiteliais , Glândulas Mamárias Animais , Mycoplasma bovis , Animais , Bovinos , Feminino , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cálcio/metabolismo , Monóxido de Carbono/metabolismo , Núcleo Celular/metabolismo , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Retículo Endoplasmático/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Lisossomos/metabolismo , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/metabolismo , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Transdução de SinaisRESUMO
Sheep pain is an animal welfare issue monitored based on behavioral responses, including appetite. Dominant (alpha) males have priority for accessing limited feed resources, however, the effects of pain on feed interest in members of a group with defined social hierarchy are unknown. Our objective was to investigate effects of acute post-orchiectomy pain on alpha rams' interest in accessing a limited feed resource. Eighteen rams were randomly housed in pens of 3 rams. After acclimation, the first 5-d (consecutive) battery of a behavior test was performed. In this test, 180 g of the regular diet concentrate was placed in a portable trough in the center of the pen; this feed was supplemental to the diet and represented a limited, albeit strongly preferable feed resource. Rams were filmed for 5 min after the feed introduction. Hierarchical levels (alpha, beta, and gamma) were defined based on the social hierarchical index according to higher initiator and lower receptor agonistic behaviors from the social network analyses. After 15 d, a second 5-d behavioral test battery was repeated. On the following day, alpha rams were castrated. Flunixin meglumine was given immediately before surgery and a final behavioral test was performed 8 h post-orchiectomy, concurrent with an expected peak in postoperative pain. For all recordings, the latency, frequency, and duration of time that each ram had its mouth inside the feed trough were recorded, and the Unesp-Botucatu sheep acute pain scale pain scale (USAPS) was applied. The social hierarchical index was highest in alpha rams, followed by beta and gamma. The pain scores were statistically equivalent across the 11 evaluation days for beta and gamma rams, whereas there was an increase in the final evaluation for alpha. There was no difference in latency, frequency, and duration between alpha, beta, and gamma rams across evaluations. We concluded that acute post-orchiectomy pain did not decrease alpha rams' interest in accessing limited feed. Routine feeding offers a valuable chance to detect pain-related behavior using the USAPS in rams. However, dominance may confound appetite-related behaviors in assessing acute pain, as alpha rams' interest in limited feed remained unaffected by the pain.
RESUMO
Streptococcus uberis mastitis in cattle infects mammary epithelial cells. Although oxidative responses often remove intracellular microbes, S. uberis survives, but the mechanisms are not well understood. Herein, we aimed to elucidate antioxidative mechanisms during pathogenesis of S. uberis after isolation from clinical bovine mastitis milk samples. S. uberis's in vitro pathomorphology, oxidative stress biological activities, transcription of antioxidative factors, inflammatory response cytokines, autophagosome and autophagy functions were evaluated, and in vivo S. uberis was injected into the fourth mammary gland nipple of each mouse to assess the infectiousness of S. uberis potential molecular mechanisms. The results showed that infection with S. uberis induced early oxidative stress and increased reactive oxygen species (ROS). However, over time, ROS concentrations decreased due to increased antioxidative activity, including total superoxide dismutase (T-SOD) and malondialdehyde (MDA) enzymes, plus transcription of antioxidative factors (Sirt1, Keap1, Nrf2, HO-1). Treatment with a ROS scavenger (N-acetyl cysteine, NAC) before infection with S. uberis reduced antioxidative responses and the inflammatory response, including the cytokines IL-6 and TNF-α, and the formation of the Atg5-LC3II/LC3I autophagosome. Synthesis of antioxidants determined autophagy functions, with Sirt1/Nrf2 activating autophagy in the presence of S. uberis. This study demonstrated the evasive mechanisms of S. uberis in mastitis, including suppressing inflammatory and ROS defenses by stimulating antioxidative pathways.
RESUMO
Klebsiella pneumoniae can cause severe clinical mastitis in dairy cows, with K. pneumoniae type K57 (K57-KP) being the most common capsular serotype. To identify virulence factors and antimicrobial-resistance (AMR) genes of K57-KP with varying virulence, Galleria mellonella (greater wax moth) larvae were infected as a screening model to characterize virulence of 90 K57-KP strains, with 10 and 11 strains defined as virulent or attenuated, respectively, based on larval survival rates. Next, virulence of these 21 isolates was subsequently confirmed in adhesion and lactate dehydrogenase release assays, using bovine mammary epithelial cells cultured in vitro. Finally, genes associated with virulence and AMR were characterize with whole-genome sequencing. These 21 K57-KP strains were designated into 16 sequence types based on multi-locus sequence typing and allocated in phylogenetic analysis based on single nucleotide polymorphisms. We found great genetic diversity among isolates. In addition, adhesion-associated genes (e.g., fimA, sfaA, and focA) aminoglycoside-resistance genes (aph(6)-Id, strAB) were associated with virulence. This study provided new knowledge regarding virulence of K57-KP associated with bovine mastitis, which may inform development of novel diagnostic tools and prevention strategies for bovine mastitis.