Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Res Methods ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578570

RESUMO

In some fish lineages, evolution has led to unique sensory adaptations that provide information which is not available to terrestrial animals. These sensory systems include, among others, electroreception, which together with the ability of fish to generate electric discharges plays a role in social communication and object location. Most studies on electric phenomena in aquatic animals are dedicated to selected groups of electric fishes that regularly generate electric signals (Mormyriformes, Gymnotiformes). There exist, however, several species (hitherto described as non-electric) which, though able to perceive electric signals, have now been found to also generate them. In this article, we introduce a tool that we have designed to investigate such electric activity. This required significant adaptations of the equipment used in fish with regular discharge generation. The necessary improvements were realized by using a multielectrode registration setup allowing simultaneous visualization and quantification of behavior and associated electric activity of fish, alone or in groups, with combined electro-video clips. Precise synchronization of locomotor and electric behaviors made it possible to determine the electrically active fish in a group, and also the location of the electrogenic structure inside the fish's body. Our simple registration procedure, together with data presentation, should attract a broad audience of scientists taking up the challenge of uncovering electric phenomena in aquatic animals currently treated as electrically inactive.

2.
J Fish Biol ; 98(5): 1385-1400, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33448377

RESUMO

Taste preferences in fishes are known mainly for carnivorous species, whereas herbivorous consumers were rarely used in such studies. The main goal of the present study was to evaluate the taste preferences in the herbivorous African cichlid fish, Nile tilapia Oreochromis niloticus. In laboratory settings, the palatability of widely used taste substances (four taste substances that are considered to be sweet, sour, bitter and salty for humans - sucrose, citric acid, calcium chloride and sodium chloride; 21 free L-amino acids; 12 sugars and artificial sweetener Na-saccharin; 0.1-0.0001 M) was evaluated. In each trial, a standard agar pellet flavoured with a substance was offered for fish individually. The consumption of pellet, the number of grasps and the retention time before the pellet was finally ingested or rejected were registered. Overall, 21 of 38 substances were palatable, whereas other substances did not shift consumption of pellets in relation to blank pellets. Pellets containing citric acid, L-cysteine, L-norvaline, L-isoleucine, L-valine, Na-saccharin and D-sorbitol were consumed in >85% of trials. Taste attractiveness of amino acids was highly species-specific and was not associated with the trophic category of the 19 species compared. Moreover, it did not correlate with dietary quantitative requirements of Nile tilapia (rs  = 0.27; P > 0.05). Palatability of sugars for O. niloticus and their sweetness for humans did not correlate as well (rs  = 0.21; P > 0.05); nonetheless, Na-saccharin has the most attractive taste for both O. niloticus and humans. The most palatable amino acids lost their effect if the concentration was lowered to 0.01 M for L-cysteine and 0.001 M for L-norvaline (lower than 242.3 µg and 23.4 µg per a pellet, respectively). Single pellet grasp was characteristic of O. niloticus feeding behaviour (>95% of trials), and this pattern may be related to the social lifestyle of this species. Fish spent 4-8 s on average for orosensory evaluation of pellet edibility. The retention time correlated with the palatability of substances and was significantly longer in trials that ended up with pellet swallowing. It is suggested that prolonged orosensory evaluation of food before swallowing provides a reliable and accurate sensory evaluation, which, in turn, can reduce the probability that inadequate food will be consumed.


Assuntos
Ciclídeos/fisiologia , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia , Aminoácidos , Animais , Herbivoria , Paladar
3.
Sci Rep ; 10(1): 7487, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366964

RESUMO

Behavioural approaches permit studies of the functional features of animal gustatory systems at the organism level, but they are seldom used compared to molecular and electrophysiological methods. This imbalance is particularly apparent in studies on fish gustation. Consequently, our notion of taste preferences remains limited in fish, the most numerous and diverse group of vertebrates. The present study aimed to determine whether fish could distinguish the tastes of chemical substances with similar structures and configurations. We performed behavioural trials, where each test substance (L-alanine, glycine, L-cysteine and 9 of their derivatives; 0.1 M) was incorporated into agar pellets, and presented to blue gourami (Trichopodus trichopterus). We found that L-α-, L-ß-, and D-α-alanine as well as L-cysteine and L-cystine had different palatabilities; and glycine, methyl-glycine, dimethyl-glycine-HCl, trimethyl-glycine, and glycyl-glycine had similar taste qualities. Results show that molecular transformation could shift the palatability of amino acids, which led to changes in the orosensory behaviour of blue gourami. The ability of fish to display different taste preferences for substances, like amino acids and their, derivetives, widely distributed among aquatic organisms, undoubtedly forms the sensory basis for selective feeding, which in turn, reduces the competition for food among sympatric species in natural waters.


Assuntos
Perciformes/fisiologia , Percepção Gustatória/fisiologia , Aminoácidos , Animais
4.
Sci Rep ; 10(1): 6150, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273544

RESUMO

Symbiotic associations between small animals and relatively large sessile invertebrates that use taste deterrents for protection are widespread in the marine environment. To determine whether the symbionts are involved in the chemical protection of their hosts, the palatability of ten species of comatulids and six species of their symbionts was evaluated. Taste attractiveness was determined by offering agar pellets flavoured with extracts of comatulids and their symbionts for four coral reef fish species. Five species of symbiont were highly palatable, and one was indifferent to the taste. Almost all comatulids were distasteful, while their aversiveness was different for different fish. These findings indicate that comatulids chemically defend themselves without assistance from symbionts, and the taste deterrents are not universal and can only be effective against particular predators. The presence of tasteful symbionts reduces the security of their hosts by provoking attacks of predators and may impact on the individual and population fitness of comatulids. However, the chemical protection of comatulids is useful for symbionts and undoubtedly increases their survival. Obtained results allows the relationship between comatulids and their symbionts considered commensalism. Most likely, similar relationships can be established in many other associations, where symbionts inhabit chemically defended coral reef invertebrates.


Assuntos
Antozoários/fisiologia , Simbiose , Animais , Antozoários/metabolismo , Recifes de Corais , Comportamento Alimentar , Peixes , Paladar
5.
J Fish Biol ; 95(1): 155-178, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30793305

RESUMO

The adaptability of the taste system in fish has led to a large variety in taste bud morphology, abundance and distribution, as well as in taste physiology characteristics in closely related species with different modes of life and feeding ecology. However, the modifications evoked in the sense of taste, or gustation, particularly during ontogeny when fishes are subject to different environmental variables, remain poorly studied. This review paper focusses on current knowledge to show how plastic and resistant the taste system in fishes is to various external factors, linked to other sensory inputs and shifts in physiological state of individuals. Ambient water temperature is fundamental to many aspects of fish biology and taste preferences are stable to many substances, however, the taste-cell turnover rate strongly depends on water temperature. Taste preferences are stable within water salinity, which gives rise to the possibility that the taste system in anadromous and catadromous fishes will only change minimally after their migration to a new environment. Food-taste selectivity is linked to fish diet and to individual feeding experience as well as the motivation to feed evoked by attractive (water extracts of food) and repellent (alarm pheromone) odours. In contrast, starvation leads to loss of aversion to many deterrent substances, which explains the consumption by starving fishes of new objects, previously refused or just occasionally consumed. Food hardness can significantly modify the final feeding decision to swallow or to reject a grasped and highly palatable food item. Heavy metals, detergents, aromatic hydrocarbons and other water contaminants have the strongest and quickest negative effects on structure and function of taste system in fish and depress taste perception and ability of fishes to respond adequately to taste stimuli after short exposures. Owing to phenotypic plasticity, the taste system can proliferate and partially restore the ability of fishes to respond to food odour after a complete loss of olfaction. In general, the taste system, especially its functionality, is regarded as stable over the life of a fish despite any alteration in their environment and such resistance is vital for maintaining physiological homeostasis.


Assuntos
Peixes/fisiologia , Olfato/fisiologia , Paladar/fisiologia , Animais , Comportamento Animal , Sinais (Psicologia) , Meio Ambiente , Preferências Alimentares , Motivação , Feromônios , Salinidade , Olfato/efeitos dos fármacos , Papilas Gustativas/anatomia & histologia , Papilas Gustativas/ultraestrutura , Água/química , Poluentes Químicos da Água/farmacologia
6.
Physiol Behav ; 140: 111-7, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25497081

RESUMO

The objective of this study was to compare the taste preferences in the closely related sympatric fish species with different feeding patterns. For this purpose, palatability for four classical taste substances was evaluated for carnivorous kutum Rutilus frisii kutum and the results were compared with the taste preferences of the omnivorous roach Rutilus rutilus which had been studied earlier. In addition, the threshold concentration and the dose-response relationship of the most palatable tastants were evaluated and the ability of kutum to differentiate food with tastants in different concentrations was estimated. It was found that citric acid significantly increases the agar gel pellet consumption within the range of concentrations from 0.01M to 0.52M; the pellets with a concentration of 0.026M were the most palatable. The pellet consumption is significantly different if the concentration of citric acid in the pellets differs more than two times. The absolute threshold concentration is 0.01M, or 2.74µg of citric acid per pellet. Sucrose and NaCl have deterrent taste at the highest concentrations tested (0.29 and 1.73M, respectively). Both substances are palatable at 10 times lower concentrations and become indifferent after further gradual decrease in their concentration. CaCl2 decreases the pellets consumption at 0.9M but is an indifferent tastant at lower concentrations (0.45, 0.09 and 0.045M). The number of rejections and repeated grasps of a food pellet is fewness and is not related to the pellet's palatability, while the retention time of pellet in the oral cavity positively and highly correlates with the pellet's palatability. Kutum have opposite taste preferences for most substances tested in comparison with the roach. It indicates that the taste preferences mediated by the oral taste receptors are different in closely related sympatric fish displayed diet divergences.


Assuntos
Cyprinidae , Preferências Alimentares/fisiologia , Limiar Gustativo/fisiologia , Paladar/fisiologia , Animais , Relação Dose-Resposta a Droga , Comportamento Alimentar , Preferências Alimentares/efeitos dos fármacos , Estatísticas não Paramétricas , Sacarose/farmacologia , Edulcorantes/farmacologia , Paladar/efeitos dos fármacos , Limiar Gustativo/efeitos dos fármacos
7.
J Exp Biol ; 212(Pt 1): 42-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19088209

RESUMO

We demonstrate a ligand-specific induction of endocytosis in cells of juvenile brown trout taste buds. The process is fast, massive and selective, as only a few cells in each taste buds are stained by exposure of the oral cavity to the taste stimulant l-cysteine together with a dye at 20 degrees C. Low temperature (+2 degrees C) and disruption of microtubules with nocodazole caused a substantial reduction in the number of taste cells stained, indicating endocytic uptake of dye and transport towards the cell soma in vesicles. As endocytosis is evoked by the presence of ligands, it is most likely that the stained cells are the so-called receptor cells, which have taste receptors and the molecular machinery for downstream processing. The number of stained taste cells and taste buds containing stained taste cells increased with the concentration of l-cysteine. Control experiments with different dyes revealed great variability in the ability to induce staining on their own. In particular, Texas Red dextran was efficient and stained many cells within each taste bud. Behavioural experiments demonstrated that Texas Red dextran is a deterrent taste substance for brown trout. In fish first exposed to the stimulant l-cysteine plus a dye and subsequently to a deterrent, either Texas Red, or glycine, the majority of stained cells were found in separate taste receptor cells, indicating that the majority of taste receptors for stimulants and deterrents are expressed in separate taste buds. These results also strengthen the assumption that the stained cells take part in the initiation of taste processes that are related to perception. The functional implication of the induced endocytosis is discussed.


Assuntos
Endocitose/fisiologia , Papilas Gustativas/fisiologia , Truta/fisiologia , Animais , Cisteína , Comportamento Alimentar/fisiologia , Corantes Fluorescentes , Ligantes , Xantenos
8.
Anat Embryol (Berl) ; 206(5): 357-72, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12684762

RESUMO

Formation and morphology of the olfactory organ of vertebrates has been intensely studied in some taxa for more than a century. As a functionally important and complex sensory organ, its ontogenetic development has often been a matter of debate on higher-level craniate evolution. However, sufficient knowledge of structure and development of the olfactory organ in the crucial taxa needed for a serious phylogenetic reasoning is generally not available. This study aims at this essential primary data source, the detailed structure, morphogenesis, and character definition of the olfactory organ in more basal clades of jawed vertebrates (Gnathostomata). Sturgeon fishes (Acipenseriformes) as recent basal actinopterygians are expected to provide insight into archaic characters and character combinations in bony fishes. Thus, the development of the olfactory placodes of the sterlet, Acipenser ruthenus, and the Siberian sturgeon, Acipenser baerii, was followed histologically, by semi-thin serial sections, and by scanning and transmission electron microscopy. Except for the timing, virtually no differences were observed between the two species. The olfactory placodes become two-layered early in embryonic development. Both the superficial epidermal and the subepidermal layer can easily be distinguished and their development followed by ultrastructural properties. There are three different types of receptor cells: ciliated, microvillous, and crypt cells. The development of the ciliated and the less abundant microvillous receptor cells from the subepidermal layer of the placode is demonstrated. The non-sensory cells of the differentiated olfactory epithelium, i.e. ciliated non-sensory cells and supporting cells, exclusively derive from the superficial epidermal layer. In this respect, acipenserids clearly demonstrate close resemblance to the morphogenetic process found in the tetrapod Xenopus (Anura). The only other adequately described mode found in the actinopterygian zebrafish ( Danio rerio), is considered a derived character. In this case, all cells of the differentiated olfactory epithelium derive from one placodal cell layer. The mode of formation of the nasal sac and its ventilatory openings found in the acipenserids examined here, represents a widespread and probably a plesiomorphic condition of osteognathostomes. In both species, differentiation of the basic cellular composition of the olfactory epithelium is far advanced at the time of onset of extrinsic feeding.


Assuntos
Peixes/embriologia , Mucosa Olfatória/embriologia , Neurônios Receptores Olfatórios/embriologia , Organogênese/fisiologia , Órgão Vomeronasal/embriologia , Animais , Microscopia Eletrônica de Varredura , Mucosa Olfatória/ultraestrutura , Neurônios Receptores Olfatórios/ultraestrutura , Filogenia , Especificidade da Espécie , Órgão Vomeronasal/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA