Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 12: 566-577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249590

RESUMO

We present detailed Raman studies of graphene deposited on gallium nitride nanowires with different variations in height. Our results indicate that different density and height of nanowires impact graphene properties such as roughness, strain, and carrier concentration as well as density and type of induced defects. Tracing the manifestation of those interactions is important for the application of novel heterostructures. A detailed analysis of Raman spectra of graphene deposited on different nanowire substrates shows that bigger differences in nanowires height increase graphene strain, while a higher number of nanowires in contact with graphene locally reduces the strain. Moreover, the value of graphene carrier concentration is found to be correlated with the density of nanowires in contact with graphene. The lowest concentration of defects is observed for graphene deposited on nanowires with the lowest density. The contact between graphene and densely arranged nanowires leads to a large density of vacancies. On the other hand, grain boundaries are the main type of defects in graphene on rarely distributed nanowires. Our results also show modification of graphene carrier concentration and strain by different types of defects present in graphene. Therefore, the nanowire substrate is promising not only for strain and carrier concentration engineering but also for defect engineering.

2.
ACS Appl Mater Interfaces ; 10(43): 37694-37698, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30286287

RESUMO

Further development and optimization of modern optoelectronic devices requires fast and reliable procedures that may evaluate the quality of interfaces. For thick multilayer devices, mixing effect may significantly prevent proper interpretation of secondary ion mass spectrometry depth profiles especially if a region of interest is located far from the sample surface. In this work, we present how to overcome this problem with a so-called a-crater-within-a-crater approach. In this notion, a high energetic primary ion beam is used to rapidly remove most of the material forming a large crater. Then, the energy is significantly reduced and a new smaller crater is formed at the bottom of the previous one. Close to the region of interest, the impact energy is decreased to 150 eV and thus an interface can be analyzed with minimal mixing effect and thus its quality can be adequately assessed. Usefulness of this approach is tested on an epitaxial structure of a triple-junction solar cell and reliable information about the structure imperfection has been obtained: p and n dopants in the tunnel junction overlapped, deteriorating the operation of the device.

3.
Sci Rep ; 7(1): 7479, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785102

RESUMO

The following invention - Graphene Enhanced Secondary Ion Mass Spectrometry - (pending European patent application no. EP 16461554.4) is related to a method of analysing a solid substrate by means of Secondary Ion Mass Spectrometry (SIMS). It comprises the steps of providing a graphene layer over the substrate surface and analysing ejected secondary anions through mass spectrometry analysis. The graphene layer acts as a kind of filament that emits a lot of secondary electrons during the experiment which significantly increases the negative ionization probability and thus the intensity of the SIMS signal can be more than two orders of magnitude higher than that of a similar sample without graphene. The method is particularly useful for the analysis of surfaces, 2D materials and ultra-thin films. The intensity of dopants and contamination signals can be enhanced up to 35 times, which approaches the detection limit of ~1015 atoms/cm 3, otherwise unreachable in a standard static SIMS analysis.

4.
Inorg Chem ; 55(9): 4117-23, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27054377

RESUMO

Various systems containing the [ML5NO] molecule, where M = Fe, Ru, ... and L = F, Cl, ..., exhibit switching under continuous light (CW) irradiation between the ground-state nitrosyl (GS), isonitrosyl (MSI), and side-on (MSII) configurations. The metastable populations, however, are often limited to a few percent. The [Ru(py)4Cl(NO)](PF6)2·(1)/2H2O system is thus a remarkable model compound as the GS to MSI transformation is nearly complete in a single crystal. A predominant two-step photon absorption process during GS to MSI switching under blue light is revealed by visible absorption spectroscopy, although a low concentration of the transient species hinders the determination of this process by the structural signature. During the depopulation of MSI, both two-step and direct processes are evidenced under red CW irradiation. Different intermediate visible spectra revealing transient species during GS to MSI and the reverse photochemical processes are discussed in relation to MSII properties.

5.
Angew Chem Int Ed Engl ; 53(40): 10636-40, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25138683

RESUMO

Molecular compounds with photoswitchable magnetic properties have been intensively investigated over the last decades due to their prospective applications in nanoelectronics, sensing and magnetic data storage. The family of copper-nitroxide-based molecular magnets represents a new promising type of photoswitchable compounds. We report the first study of these appealing systems using femtosecond optical spectroscopy. We unveil the mechanism of ultrafast (<50 fs) spin state photoswitching and establish its principal differences compared to other photoswitchable magnets. On this basis, we propose potential advantages of copper-nitroxide-based molecular magnets for the future design of ultrafast magnetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA