Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1386924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736483

RESUMO

The Slitrk family consists of six synaptic adhesion molecules, some of which are associated with neuropsychiatric disorders. In this study, we aimed to investigate the physiological role of Slitrk4 by analyzing Slitrk4 knockout (KO) mice. The Slitrk4 protein was widely detected in the brain and was abundant in the olfactory bulb and amygdala. In a systematic behavioral analysis, male Slitrk4 KO mice exhibited an enhanced fear memory acquisition in a cued test for classical fear conditioning, and social behavior deficits in reciprocal social interaction tests. In an electrophysiological analysis using amygdala slices, Slitrk4 KO mice showed enhanced long-term potentiation in the thalamo-amygdala afferents and reduced feedback inhibition. In the molecular marker analysis of Slitrk4 KO brains, the number of calretinin (CR)-positive interneurons was decreased in the anterior part of the lateral amygdala nuclei at the adult stage. In in vitro experiments for neuronal differentiation, Slitrk4-deficient embryonic stem cells were defective in inducing GABAergic interneurons with an altered response to sonic hedgehog signaling activation that was involved in the generation of GABAergic interneuron subsets. These results indicate that Slitrk4 function is related to the development of inhibitory neurons in the fear memory circuit and would contribute to a better understanding of osttraumatic stress disorder, in which an altered expression of Slitrk4 has been reported.

2.
BMC Immunol ; 24(1): 42, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940849

RESUMO

BACKGROUND: Lymphedema is an intractable disease that can be caused by injury to lymphatic vessels, such as by surgical treatments for cancer. It can lead to impaired joint mobility in the extremities and reduced quality of life. Chronic inflammation due to infiltration of various immune cells in an area of lymphedema is thought to lead to local fibrosis, but the molecular pathogenesis of lymphedema remains unclear. Development of effective therapies requires elucidation of the immunological mechanisms involved in the progression of lymphedema. The complement system is part of the innate immune system which has a central role in the elimination of invading microbes and acts as a scavenger of altered host cells, such as apoptotic and necrotic cells and cellular debris. Complement-targeted therapies have recently been clinically applied to various diseases caused by complement overactivation. In this context, we aimed to determine whether complement activation is involved in the development of lymphedema. RESULTS: Our mouse tail lymphedema models showed increased expression of C3, and that the classical or lectin pathway was locally activated. Complement activation was suggested to be involved in the progression of lymphedema. In comparison of the C3 knockout (KO) mouse lymphedema model and wild-type mice, there was no difference in the degree of edema at three weeks postoperatively, but the C3 KO mice had a significant increase of TUNEL+ necrotic cells and CD4+ T cells. Infiltration of macrophages and granulocytes was not significantly elevated in C3 KO or C5 KO mice compared with in wild-type mice. Impaired opsonization and decreased migration of macrophages and granulocytes due to C3 deficiency should therefore induce the accumulation of dead cells and may lead to increased infiltration of CD4+ T cells. CONCLUSIONS: Vigilance for exacerbation of lymphedema is necessary when surgical treatments have the potential to injure lymphatic vessels in patients undergoing complement-targeted therapies or with complement deficiency. Future studies should aim to elucidate the molecular mechanism of CD4+ T cell infiltration by accumulated dead cells.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Animais , Camundongos , Qualidade de Vida , Linfedema/etiologia , Linfedema/metabolismo , Linfedema/patologia , Linfócitos T CD4-Positivos , Inflamação , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 14: 1090548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936980

RESUMO

Complement is involved in the pathogenesis of neuroimmune disease, but the detailed pathological roles of the complement pathway remain incompletely understood. Recently, eculizumab, a humanized anti-C5 monoclonal antibody, has been clinically applied against neuroimmune diseases such as myasthenia gravis and neuromyelitis optica spectrum disorders (NMOSD). Clinical application of eculizumab is also being investigated for another neuroimmune disease, Guillain-Barré syndrome (GBS). However, while the effectiveness of eculizumab for NMOSD is extremely high in many cases, there are some cases of myasthenia gravis and GBS in which eculizumab has little or no efficacy. Development of effective biomarkers that reflect complement activation in these diseases is therefore important. To identify biomarkers that could predict disease status, we retrospectively analyzed serum levels of complement factors in 21 patients with NMOSD and 25 patients with GBS. Ba, an activation marker of the alternative complement pathway, was elevated in the acute phases of both NMOSD and GBS. Meanwhile, sC5b-9, an activation marker generated by the terminal complement pathway, was elevated in NMOSD but not in GBS. Complement factor H (CFH), a complement regulatory factor, was decreased in the acute phase as well as in the remission phase of NMOSD, but not in any phases of GBS. Together, these findings suggest that complement biomarkers, such as Ba, sC5b-9 and CFH in peripheral blood, have potential utility in understanding the pathological status of NMOSD.


Assuntos
Biomarcadores , Proteínas do Sistema Complemento , Neuromielite Óptica , Humanos , Biomarcadores/sangue , Ativação do Complemento , Fator B do Complemento , Complexo de Ataque à Membrana do Sistema Complemento , Via Alternativa do Complemento , Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/imunologia , Síndrome de Guillain-Barré/sangue , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/imunologia , Neuromielite Óptica/sangue , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Estudos Retrospectivos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
4.
Exp Neurol ; 361: 114316, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586552

RESUMO

Rac1, a member of small Rho GTPases, is involved in diverse cellular processes in neuronal cells. Rac1 plays especially important roles during development, and its roles have been extensively studied using Rac1-deficient mice. Rac3, a close homolog of Rac1, is ubiquitously expressed in the nervous system and may therefore compensate for Rac1 in Rac1-deficient cells. Exploration of the roles of Rac in neurons may therefore be difficult. We thus deleted both Rac1 and Rac3 in cortical neurons. Rac-deficient cerebral cortices formed slightly hypoplastic but almost normally layered structures at birth, but cortical neurons underwent apoptosis soon after birth. Rac-deficient cortical neurons had poor survivability and there was reduction in the length and the number of neurites in vitro. Activation of Pak1, a downstream effector of Rac, in Rac-deficient cortical neurons rescued the survivability in vitro. Pak1-activated Rac-deficient neurons had numerous dendrites, but no axons. Restoration of p35, a regulator of Cdk5, partly rescued the survivability of Rac-deficient neurons both in vitro and in vivo. Expression of p35 also partly rescued the length and the number of neurites in Rac-deficient neurons in vitro. Rac was shown to be indispensable for the survival of cortical neurons, and Pak1 and Cdk5/p35 work as downstream effectors of Rac to promote neuronal survival.


Assuntos
Proteínas rac de Ligação ao GTP , Animais , Camundongos , Axônios/metabolismo , Neuritos , Neurônios/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Sci Rep ; 12(1): 14848, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050459

RESUMO

Granule neurons are the most common cell type in the cerebellum. They are generated in the external granule layer and migrate inwardly, forming the internal granule layer. Small Rho GTPases play various roles during development of the nervous system and may be involved in generation, differentiation and migration of granule neurons. We deleted Rac1, a member of small Rho GTPases, by GFAP-Cre driver in cerebellar granule neurons and Bergmann glial cells. Rac1flox/flox; Cre mice showed impaired migration and slight reduction in the number of granule neurons in the internal granule layer. Deletion of both Rac1 and Rac3 resulted in almost complete absence of granule neurons. Rac-deficient granule neurons differentiated into p27 and NeuN-expressing post mitotic neurons, but died before migration to the internal granule layer. Loss of Rac3 has little effect on granule neuron development. Rac1flox/flox; Rac3+/-; Cre mice showed intermediate phenotype between Rac1flox/flox; Cre and Rac1flox/flox; Rac3-/-; Cre mice in both survival and migration of granule neurons. Rac3 itself seems to be unimportant in the development of the cerebellum, but has some roles in Rac1-deleted granule neurons. Conversely, overall morphology of Rac1+/flox; Rac3-/-; Cre cerebella was normal. One allele of Rac1 is therefore thought to be sufficient to promote development of cerebellar granule neurons.


Assuntos
Cerebelo , Neurogênese , Proteínas rac de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP , Animais , Morte Celular , Movimento Celular , Cerebelo/metabolismo , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Commun Biol ; 5(1): 935, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085162

RESUMO

SLITRK1 is an obsessive-compulsive disorder spectrum-disorders-associated gene that encodes a neuronal transmembrane protein. Here we show that SLITRK1 suppresses noradrenergic projections in the neonatal prefrontal cortex, and SLITRK1 functions are impaired by SLITRK1 mutations in patients with schizophrenia (S330A, a revertant of Homo sapiens-specific residue) and bipolar disorder (A444S). Slitrk1-KO newborns exhibit abnormal vocalizations, and their prefrontal cortices show excessive noradrenergic neurites and reduced Semaphorin3A expression, which suppresses noradrenergic neurite outgrowth in vitro. Slitrk1 can bind Dynamin1 and L1 family proteins (Neurofascin and L1CAM), as well as suppress Semaphorin3A-induced endocytosis. Neurofascin-binding kinetics is altered in S330A and A444S mutations. Consistent with the increased obsessive-compulsive disorder prevalence in males in childhood, the prefrontal cortex of male Slitrk1-KO newborns show increased noradrenaline levels, and serotonergic varicosity size. This study further elucidates the role of noradrenaline in controlling the development of the obsessive-compulsive disorder-related neural circuit.


Assuntos
Norepinefrina , Córtex Pré-Frontal , Axônios , Humanos , Recém-Nascido , Masculino , Proteínas de Membrana , Proteínas do Tecido Nervoso , Neuritos , Crescimento Neuronal
7.
iScience ; 25(7): 104604, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789858

RESUMO

SLITRK2 encodes a transmembrane protein that modulates neurite outgrowth and synaptic activities and is implicated in bipolar disorder. Here, we addressed its physiological roles in mice. In the brain, the Slitrk2 protein was strongly detected in the hippocampus, vestibulocerebellum, and precerebellar nuclei-the vestibular-cerebellar-brainstem neural network including pontine gray and tegmental reticular nucleus. Slitrk2 knockout (KO) mice exhibited increased locomotor activity in novel environments, antidepressant-like behaviors, enhanced vestibular function, and increased plasticity at mossy fiber-CA3 synapses with reduced sensitivity to serotonin. A serotonin metabolite was increased in the hippocampus and amygdala, and serotonergic neurons in the raphe nuclei were decreased in Slitrk2 KO mice. When KO mice were treated with methylphenidate, lithium, or fluoxetine, the mood stabilizer lithium showed a genotype-dependent effect. Taken together, Slitrk2 deficiency causes aberrant neural network activity, synaptic integrity, vestibular function, and serotonergic function, providing molecular-neurophysiological insight into the brain dysregulation in bipolar disorders.

8.
Front Mol Neurosci ; 15: 856315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615067

RESUMO

The striatum is involved in action selection, and its disturbance can cause movement disorders. Here, we show that leucine-rich repeats and transmembrane domain 2 (Lrtm2) controls protein sorting in striatal projection systems, and its deficiency causes disturbances in monoamine dynamics and behavior. The Lrtm2 protein was broadly detected in the brain, but it was enhanced in the olfactory bulb and dorsal striatum. Immunostaining revealed a strong signal in striatal projection output, including GABAergic presynaptic boutons of the SNr. In subcellular fractionation, Lrtm2 was abundantly recovered in the synaptic plasma membrane fraction, synaptic vesicle fraction, and microsome fraction. Lrtm2 KO mice exhibited altered motor responses in both voluntary explorations and forced exercise. Dopamine metabolite content was decreased in the dorsal striatum and hypothalamus, and serotonin turnover increased in the dorsal striatum. The prefrontal cortex showed age-dependent changes in dopamine metabolites. The distribution of glutamate decarboxylase 67 (GAD67) protein and gamma-aminobutyric acid receptor type B receptor 1 (GABA B R1) protein was altered in the dorsal striatum. In cultured neurons, wild-type Lrtm2 protein enhanced axon trafficking of GAD67-GFP and GABA B R1-GFP whereas such activity was defective in sorting signal-abolished Lrtm2 mutant proteins. The topical expression of hemagglutinin-epitope-tag (HA)-Lrtm2 and a protein sorting signal abolished HA-Lrtm2 mutant differentially affected GABA B R1 protein distribution in the dorsal striatum. These results suggest that Lrtm2 is an essential component of striatal projection neurons, contributing to a better understanding of striatal pathophysiology.

9.
Sci Rep ; 10(1): 18251, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106510

RESUMO

Visualization of the surgically operated tissues is vital to improve surgical model animals including mouse. Urological surgeries for urethra include series of fine manipulations to treat the increasing number of birth defects such as hypospadias. Hence visualization of the urethral status is vital. Inappropriate urethral surgical procedure often leads to the incomplete wound healing and subsequent formation of urethro-cutaneous fistula or urethral stricture. Application of indocyanine green mediated visualization of the urethra was first performed in the current study. Indocyanine green revealed the bladder but not the urethral status in mouse. Antegrade injection of contrast agent into the bladder enabled to detect the urethral status in vivo. The visualization of the leakage of contrast agent from the operated region was shown as the state of urethral fistula in the current hypospadias mouse model and urethral stricture was also revealed. A second trial for contrast agent was performed after the initial operation and a tendency of accelerated urethral stricture was observed. Thus, assessment of post-surgical conditions of urogenital tissues can be improved by the current analyses on the urethral status.


Assuntos
Fístula/patologia , Procedimentos de Cirurgia Plástica/métodos , Cirurgia Assistida por Computador/métodos , Uretra/cirurgia , Bexiga Urinária/cirurgia , Procedimentos Cirúrgicos Urológicos/métodos , Fístula Anastomótica , Animais , Meios de Contraste/metabolismo , Fístula/diagnóstico por imagem , Fístula/metabolismo , Fístula/cirurgia , Hipospadia/diagnóstico por imagem , Hipospadia/metabolismo , Hipospadia/patologia , Hipospadia/cirurgia , Verde de Indocianina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Uretra/diagnóstico por imagem , Uretra/metabolismo , Estreitamento Uretral/diagnóstico por imagem , Estreitamento Uretral/metabolismo , Estreitamento Uretral/patologia , Estreitamento Uretral/cirurgia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/metabolismo
10.
Int Immunol ; 31(10): 657-668, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30689886

RESUMO

Cholera toxin B (CTB) is a subunit of cholera toxin, a bacterial enterotoxin secreted by Vibrio cholerae and also functions as an immune adjuvant. However, it remains unclear how CTB activates immune cells. We here evaluated whether or how CTB induces production of a pro-inflammatory cytokine, interleukin-1ß (IL-1ß). CTB induced IL-1ß production not only from bone marrow-derived macrophages (BMMs) but also from resident peritoneal macrophages in synergy with O111:B4-derived lipopolysaccharide (LPS O111:B4) that can bind to CTB. Meanwhile, when prestimulated with O55:B5-derived LPS (LPS O55:B5) that fails to bind to CTB, resident peritoneal macrophages, but not BMMs, produced IL-1ß in response to CTB. The CTB-induced IL-1ß production in synergy with LPS in both peritoneal macrophages and BMMs was dependent on ganglioside GM1, which is required for internalization of CTB. Notably, not only the NLRP3 inflammasome but also the pyrin inflammasome were involved in CTB-induced IL-1ß production from resident peritoneal macrophages, while only the NLRP3 inflammasome was involved in that from BMMs. In response to CTB, a Rho family small GTPase, RhoA, which activates pyrin inflammasome upon various kinds of biochemical modification, increased its phosphorylation at serine-188 in a GM1-dependent manner. This phosphorylation as well as CTB-induced IL-1ß productions were dependent on protein kinase A (PKA), indicating critical involvement of PKA-dependent RhoA phosphorylation in CTB-induced IL-1ß production. Taken together, these results suggest that CTB, incorporated through GM1, can activate resident peritoneal macrophages to produce IL-1ß in synergy with LPS through novel mechanisms in which pyrin as well as NLRP3 inflammasomes are involved.


Assuntos
Toxina da Cólera/farmacologia , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/biossíntese , Macrófagos Peritoneais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Pirina/imunologia , Animais , Humanos , Inflamassomos/imunologia , Macrófagos Peritoneais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA