Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21520, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37942151

RESUMO

The field of automated lung cancer diagnosis using Computed Tomography (CT) scans has been significantly advanced by the precise predictions offered by Convolutional Neural Network (CNN)-based classifiers. Critical areas of study include improving image quality, optimizing learning algorithms, and enhancing diagnostic accuracy. To facilitate a seamless transition from research laboratories to real-world applications, it is crucial to improve the technology's usability-a factor often neglected in current state-of-the-art research. Yet, current state-of-the-art research in this field frequently overlooks the need for expediting this process. This paper introduces Healthcare-As-A-Service (HAAS), an innovative concept inspired by Software-As-A-Service (SAAS) within the cloud computing paradigm. As a comprehensive lung cancer diagnosis service system, HAAS has the potential to reduce lung cancer mortality rates by providing early diagnosis opportunities to everyone. We present HAASNet, a cloud-compatible CNN that boasts an accuracy rate of 96.07%. By integrating HAASNet predictions with physio-symptomatic data from the Internet of Medical Things (IoMT), the proposed HAAS model generates accurate and reliable lung cancer diagnosis reports. Leveraging IoMT and cloud technology, the proposed service is globally accessible via the Internet, transcending geographic boundaries. This groundbreaking lung cancer diagnosis service achieves average precision, recall, and F1-scores of 96.47%, 95.39%, and 94.81%, respectively.

2.
Arch Comput Methods Eng ; : 1-12, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37359746

RESUMO

Viruses have killed and infected millions of people across the world. It causes several chronic diseases like COVID-19, HIV, and hepatitis. To cope with such diseases and virus infections, antiviral peptides (AVPs) have been applied in the design of drugs. Keeping in view the significant role in pharmaceutical industry and other research fields, identification of AVPs is highly indispensable. In this connection, experimental and computational methods were proposed to identify AVPs. However, more accurate predictors for boosting AVPs identification are highly desirable. This work presents a thorough study and reports the available predictors of AVPs. We explained applied datasets, feature representation approaches, classification algorithms, and evaluation parameters of performance. In this study, the limitations of the existing studies and the best methods were emphasized. Provided the pros and cons of the applied classifiers. The future insights demonstrate efficient feature encoding approaches, best feature optimization schemes, and effective classification techniques that can improve the performance of novel method for accurate prediction of AVPs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36981702

RESUMO

The Emergency Departments (EDs), in hospitals located in a few important areas in Saudi Arabia, experience a heavy inflow of patients due to viral illnesses, pandemics, and even on a few special occasions events such as Hajj or Umrah, when pilgrims travel from one region to another with severe disease conditions. Apart from the EDs, it is critical to monitor the movements of patients from EDs to other wards inside the hospital or in the region. This is to track the spread of viral illnesses that require more attention. In this scenario, Machine Learning (ML) algorithms can be used to classify the data into many classes and track the target audience. The current research article presents a Machine Learning-based Medical Data Monitoring and Classification Model for the EDs of the KSA hospitals and is named MLMDMC-ED technique. The most important aim of the proposed MLMDMC-ED technique is to monitor and track the patient's visits to the EDs, the treatment given to them based on the Canadian Emergency Department Triage and Acuity Scale (CTAS), and their Length Of Stay (LOS) in the hospital, based on their treatment requirements. A patient's clinical history is crucial in terms of making decisions during health emergencies or pandemics. So, the data should be processed so that it can be classified and visualized in different formats using the ML technique. The current research work aims at extracting the textual features from the patients' data using the metaheuristic Non-Defeatable Genetic Algorithm II (NSGA II). The data, collected from the hospitals, are classified using the Graph Convolutional Network (GCN) model. Grey Wolf Optimizer (GWO) is exploited for fine-tuning the parameters to optimize the performance of the GCN model. The proposed MLMDMC-ED technique was experimentally validated on the healthcare data and the outcomes indicated the improvements of the MLMDMC-ED technique over other models with a maximum accuracy of 91.87%.


Assuntos
Serviço Hospitalar de Emergência , Hospitais , Canadá , Atenção à Saúde , Aprendizado de Máquina , Triagem/métodos
4.
Healthcare (Basel) ; 11(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36833124

RESUMO

Prostate cancer (PCa) is becoming one of the most frequently occurring cancers among men and causes an even greater number of deaths. Due to the complexity of tumor masses, radiologists find it difficult to identify PCa accurately. Over the years, several PCa-detecting methods have been formulated, but these methods cannot identify cancer efficiently. Artificial Intelligence (AI) has both information technologies that simulate natural or biological phenomena and human intelligence in addressing issues. AI technologies have been broadly implemented in the healthcare domain, including 3D printing, disease diagnosis, health monitoring, hospital scheduling, clinical decision support, classification and prediction, and medical data analysis. These applications significantly boost the cost-effectiveness and accuracy of healthcare services. This article introduces an Archimedes Optimization Algorithm with Deep Learning-based Prostate Cancer Classification (AOADLB-P2C) model on MRI images. The presented AOADLB-P2C model examines MRI images for the identification of PCa. To accomplish this, the AOADLB-P2C model performs pre-processing in two stages: adaptive median filtering (AMF)-based noise removal and contrast enhancement. Additionally, the presented AOADLB-P2C model extracts features via a densely connected network (DenseNet-161) model with a root-mean-square propagation (RMSProp) optimizer. Finally, the presented AOADLB-P2C model classifies PCa using the AOA with a least-squares support vector machine (LS-SVM) method. The simulation values of the presented AOADLB-P2C model are tested using a benchmark MRI dataset. The comparative experimental results demonstrate the improvements of the AOADLB-P2C model over other recent approaches.

5.
Comput Intell Neurosci ; 2022: 2557795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210985

RESUMO

Diabetes is a chronic disease that can cause several forms of chronic damage to the human body, including heart problems, kidney failure, depression, eye damage, and nerve damage. There are several risk factors involved in causing this disease, with some of the most common being obesity, age, insulin resistance, and hypertension. Therefore, early detection of these risk factors is vital in helping patients reverse diabetes from the early stage to live healthy lives. Machine learning (ML) is a useful tool that can easily detect diabetes from several risk factors and, based on the findings, provide a decision-based model that can help in diagnosing the disease. This study aims to detect the risk factors of diabetes using ML methods and to provide a decision support system for medical practitioners that can help them in diagnosing diabetes. Moreover, besides various other preprocessing steps, this study has used the synthetic minority over-sampling technique integrated with the edited nearest neighbor (SMOTE-ENN) method for balancing the BRFSS dataset. The SMOTE-ENN is a more powerful method than the individual SMOTE method. Several ML methods were applied to the processed BRFSS dataset and built prediction models for detecting the risk factors that can help in diagnosing diabetes patients in the early stage. The prediction models were evaluated using various measures that show the high performance of the models. The experimental results show the reliability of the proposed models, demonstrating that k-nearest neighbor (KNN) outperformed other methods with an accuracy of 98.38%, sensitivity, specificity, and ROC/AUC score of 98%. Moreover, compared with the existing state-of-the-art methods, the results confirm the efficacy of the proposed models in terms of accuracy and other evaluation measures. The use of SMOTE-ENN is more beneficial for balancing the dataset to build more accurate prediction models. This was the main reason it was possible to achieve models more accurate than the existing ones.


Assuntos
Diabetes Mellitus , Aprendizado de Máquina , Algoritmos , Diabetes Mellitus/diagnóstico , Diagnóstico Precoce , Humanos , Reprodutibilidade dos Testes , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA