Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1844(12): 2155-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224745

RESUMO

Fibroblast growth factor 1 (FGF1) is a heparin-binding proangiogenic protein. FGF1 lacks the conventional N-terminal signal peptide required for secretion through the endoplasmic reticulum (ER)-Golgi secretory pathway. FGF1 is released through a Cu(2+)-mediated nonclassical secretion pathway. The secretion of FGF1 involves the formation of a Cu(2+)-mediated multiprotein release complex (MRC) including FGF1, S100A13 (a calcium-binding protein) and p40 synaptotagmin (Syt1). It is believed that the binding of Cu(2+) to the C2B domain is important for the release of FGF1 into the extracellular medium. In this study, using a variety of biophysical studies, Cu(2+) and lipid interactions of the C2B domain of Syt1 were characterized. Isothermal titration calorimetry (ITC) experiments reveal that the C2B domain binds to Cu(2+) in a biphasic manner involving an initial endothermic and a subsequent exothermic phase. Fluorescence energy transfer experiments using Tb(3+) show that there are two Cu(2+)-binding pockets on the C2B domain, and one of these is also a Ca(2+)-binding site. Lipid-binding studies using ITC demonstrate that the C2B domain preferentially binds to small unilamellar vesicles of phosphatidyl serine (PS). Results of the differential scanning calorimetry and limited trypsin digestion experiments suggest that the C2B domain is marginally destabilized upon binding to PS vesicles. These results, for the first time, suggest that the main role of the C2B domain of Syt1 is to serve as an anchor for the FGF1 MRC on the membrane bilayer. In addition, the binding of the C2B domain to the lipid bilayer is shown to significantly decrease the binding affinity of the protein to Cu(2+). The study provides valuable insights on the sequence of structural events that occur in the nonclassical secretion of FGF1.

2.
Biochem Biophys Res Commun ; 425(3): 673-8, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22842457

RESUMO

Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associated KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. (1)H-(15)N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.


Assuntos
Síndrome de Kallmann/genética , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/genética , Sequência de Aminoácidos , Fator 1 de Crescimento de Fibroblastos/química , Heparina/química , Humanos , Ligantes , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
J Biol Chem ; 285(44): 34220-30, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20729200

RESUMO

The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas de Cloroplastos , Clonagem Molecular , Guanosina Trifosfato/química , Hidrólise , Modelos Biológicos , Pisum sativum/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Tilacoides/metabolismo
4.
Biochim Biophys Acta ; 1798(2): 297-302, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19835837

RESUMO

Human fibroblast growth factor (hFGF-1) is a approximately 17 kDa heparin binding cytokine. It lacks the conventional hydrophobic N-terminal signal sequence and is secreted through non-classical secretion routes. Under stress, hFGF-1 is released as a multiprotein complex consisting of hFGF-1, S100A13 (a calcium binding protein), and p40 synaptotagmin (Syt1). Copper (Cu(2+)) is shown to be required for the formation of the multiprotein hFGF-1 release complex (Landriscina et al. ,2001; Di Serio et al., 2008). Syt1, containing the lipid binding C2B domain, is believed to play an important role in the eventual export of the hFGF-1 across the lipid bilayer. In this study, we characterize Cu(2+) and lipid interactions of the C2B domain of Syt1 using multidimensional NMR spectroscopy. The results highlight how Cu(2+) appears to stabilize the protein bound to pS vesicles. Cu(2+) and lipid binding interface mapped using 2D (1)H-(15)N heteronuclear single quantum coherence experiments reveal that residues in beta-strand I contributes to the unique Cu(2+) binding site in the C2B domain. In the absence of metal ions, residues located in Loop II and beta-strand IV contribute to binding to unilamelar pS vesicles. In the presence of Cu(2+), additional residues located in Loops I and III appear to stabilize the protein-lipid interactions. The results of this study provide valuable information towards understanding the molecular mechanism of the Cu(2+)-induced non-classical secretion of hFGF-1.


Assuntos
Cobre/química , Fator 1 de Crescimento de Fibroblastos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Complexos Multiproteicos/química , Sinaptotagmina I/química , Cobre/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína/fisiologia , Estrutura Secundária de Proteína/fisiologia , Sinaptotagmina I/metabolismo
5.
Biomol NMR Assign ; 2(1): 37-39, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19112521

RESUMO

We report the assignment of a 109 amino acid C-terminal chromo domain of the chloroplast signal recognition particle cpSRP43 subunit. cpSRP43 plays a crucial role in the targeting of light harvesting chlorophyll proteins to the thylakoids.

6.
J Mol Biol ; 381(1): 49-60, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18586266

RESUMO

Signal recognition particle in chloroplasts (cpSRP) exhibits the unusual ability to bind and target full-length proteins to the thylakoid membrane. Unlike cytosolic SRPs in prokaryotes and eukaryotes, cpSRP lacks an RNA moiety and functions as a heterodimer composed of a conserved 54-kDa guanosine triphosphatase (cpSRP54) and a unique 43-kDa subunit (cpSRP43). Assembly of the cpSRP heterodimer is a prerequisite for post-translational targeting activities and takes place through interactions between chromatin modifier domain 2 (CD2) of cpSRP43 and a unique 10-amino-acid region in cpSRP54 (cpSRP54(pep)). We have used multidimensional NMR spectroscopy and other biophysical methods to examine the assembly and structure of the cpSRP43-cpSRP54 interface. Our data show that CD2 of cpSRP43 binds to cpSRP54(pep) in a 1:1 stoichiometry with an apparent K(d) of approximately 1.06 muM. Steady-state fluorescence and far-UV circular dichroism data suggest that the CD2-cpSRP54(pep) interaction causes significant conformational changes in both CD2 and the peptide. Comparison of the three-dimensional solution structures of CD2 alone and in complex with cpSRP54(pep) shows that significant structural changes are induced in CD2 in order to establish a binding interface contributed mostly by residues in the N-terminal segment of CD2 (Phe5-Val10) and an arginine doublet (Arg536 and Arg537) in the cpSRP54 peptide. Taken together, our results provide new insights into the mechanism of cpSRP assembly and the structural forces that stabilize the functionally critical cpSRP43-cpSRP54 interaction.


Assuntos
Cloroplastos/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Cloroplastos , Cromatina/metabolismo , Dimerização , Membranas Intracelulares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Partícula de Reconhecimento de Sinal/genética , Temperatura , Titulometria
7.
Anal Biochem ; 375(2): 361-3, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18279654

RESUMO

A new strategy to prevent degradation of recombinant proteins caused by non-specific cleavage by thrombin is described. We demonstrate that degradation due to non-specific cleavage of recombinant protein mediated by thrombin can be completely prevented by separation of thrombin from the recombinant protein on spin columns packed with heparin-sepharose. This method is generally applicable to all recombinant proteins that require the thrombin for the cleavage of affinity tags for purification. To our knowledge, this is the first report of an efficient and reliable method for the separation of residual thrombin from purified recombinant proteins.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Proteínas Recombinantes/metabolismo , Trombina/isolamento & purificação , Trombina/metabolismo , Heparina/química , Proteínas Recombinantes/isolamento & purificação , Sefarose/química , Trombina/química
9.
J Cell Biochem ; 103(5): 1327-43, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17786931

RESUMO

A growing number of proteins devoid of signal peptides have been demonstrated to be released through the non-classical pathways independent of endoplasmic reticulum and Golgi. Among them are two potent proangiogenic cytokines FGF1 and IL1alpha. Stress-induced transmembrane translocation of these proteins requires the assembly of copper-dependent multiprotein release complexes. It involves the interaction of exported proteins with the acidic phospholipids of the inner leaflet of the cell membrane and membrane destabilization. Not only stress, but also thrombin treatment and inhibition of Notch signaling stimulate the export of FGF1. Non-classical release of FGF1 and IL1alpha presents a promising target for treatment of cardiovascular, oncologic, and inflammatory disorders.


Assuntos
Membrana Celular/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Interleucina-1alfa/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Complexo de Golgi/metabolismo , Humanos , Inflamação/metabolismo , Neoplasias/metabolismo , Transporte Proteico , Receptores Notch/metabolismo , Transdução de Sinais
10.
Biochim Biophys Acta ; 1768(12): 3080-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17991455

RESUMO

S100A13 is a 98-amino acid, calcium binding protein. It is known to participate in the non-classical secretion of signal peptide-less proteins, such as the acidic fibroblast growth factor. In this study, we investigate the lipid binding properties of S10013 using a number of biophysical techniques, including multidimensional NMR spectroscopy. Isothermal titration calorimetry and steady state fluorescence experiments show that apoS100A13 exhibits preferential binding to small unilamelar vesicles of l-phosphatidyl serine (pS). In comparison, Ca2+-bound S100A13 is observed to bind weakly to unilamelar vesicles (SUVs) of pS. Equilibrium thermal unfolding and limited trypsin digestion analysis reveal that apoS100A13 is significantly destabilized upon binding to SUVs of pS. Results of the far UV circular dichroism and ANS (8-anilino-1-napthalene sufonate) binding experiments indicate a subtle conformational change resulting in the increase in the solvent-accessible hydrophobic surface in the protein. Availability of the solvent-exposed hydrophobic surface(s) in apoS10013 facilitates its interaction with the lipid vesicles. Our data suggest that Ca2+ binding dictates the membrane binding affinity of S100A13. Based on the results of this study, a model describing the sequence of molecular events that possibly can occur during the non-classical secretion of FGF-1 is presented.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Lipídeos/química , Proteínas S100/química , Sítios de Ligação , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas S100/metabolismo
11.
Biochemistry ; 45(3): 899-906, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16411766

RESUMO

Fibroblast growth factors (FGFs) play crucial roles in the regulation of key cellular processes such as angiogenesis, differentiation, and tumor growth. Suramin, a polysulfonated naphthylurea, is known to be a potent inhibitor of FGF-induced angiogenesis. Using isothermal titration calorimetry, we demonstrate that human acidic fibroblast growth factor (hFGF-1) binds to suramin with high affinity in the nanomolar range. The suramin:hFGF-1 binding stoichiometry is estimated to be 2:1. Size-exclusion chromatography data reveal that suramin oligomerizes hFGF-1 to form a stable tetramer. Thermal unfolding experiments monitored by steady state fluorescence, and limited trypsin digestion analysis data suggest that suramin-induced oligomerization of hFGF-1 occurs in two steps. The first step involves the binding of suramin at specific sites on the protein. Two molecules of suramin appear to bind simultaneously to one molecule of hFGF-1. Binding of suramin possibly involves formation of solvent-exposed nonpolar surfaces in hFGF-1. In the second step, FGF appears to oligomerize through coalescence of the solvent-accessible nonpolar surfaces. Results of the NMR experiments reveal that suramin binds to residues in the heparin binding pocket as well as to residues involved in FGF receptor binding. On the basis of the results of this study, we propose a model to explain the molecular mechanism(s) underlying the antimitogenic activity of suramin. To our knowledge, this is the first study in which suramin interaction sites on FGF have been characterized.


Assuntos
Antimitóticos/farmacologia , Mitose/efeitos dos fármacos , Suramina/farmacologia , Antimitóticos/química , Antimitóticos/metabolismo , Escherichia coli/genética , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Suramina/química , Suramina/metabolismo
12.
Biochemistry ; 44(48): 15787-98, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16313182

RESUMO

The three-dimensional solution structure of the ligand binding D2 domain of the fibroblast growth factor receptor (FGFR) is determined using multidimensional NMR techniques. The atomic root-mean-square distribution for the backbone atoms in the structured region is 0.64 A. Secondary structural elements in the D2 domain include 11 beta-strands arranged antiparallely into two layers of beta-sheets. The structure of the D2 domain is characterized by the presence of a short flexible helix that protrudes out of the layers of beta-sheets. Results of size exclusion chromatography and sedimentation velocity experiments show that the D2 domain exists in a monomeric state both in the presence and in the absence of bound sucrose octasulfate (SOS), a structural analogue of heparin. Comparison of the solution structure of the D2 domain with the crystal structure of the protein (D2 domain) in the FGF signaling complex reveals significant differences, suggesting that ligand (FGF) binding may induce significant conformational changes in the receptor. SOS binding sites in the D2 domain have been mapped on the basis of the 1H-15N chemical shift perturbation data. SOS binds to the positively charged residues located in beta-strand III and the flexible helix. Isothermal titration calorimetry data indicate that the ligand (hFGF-1) binds strongly (Kd approximately 10(-9) M) to the D2 domain even in the absence of SOS. Binding of SOS to either the D2 domain or hFGF-1 does not seem to be the driving force for the formation of the D2-hFGF-1 binary complex. The function of SOS binding appears to stabilize the preformed D2-FGF binary complex.


Assuntos
Heparina/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligantes , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sacarose/análogos & derivados , Sacarose/química
13.
J Biol Chem ; 280(33): 29682-8, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15941715

RESUMO

Newt fibroblast growth factor (nFGF-1) is an approximately 15-kDa all beta-sheet protein devoid of disulfide bonds. Urea-induced equilibrium unfolding of nFGF-1, monitored by steady state fluorescence and far-UV circular dichroism spectroscopy, is cooperative with no detectable intermediate(s). Urea-induced unfolding of nFGF-1 is reversible, but the percentage of the protein recovered in the native state depends on the time of incubation of the protein in the denaturant. The yield of the protein in the native state decreases with the increase in time of incubation in the denaturant. The failure of the protein to refold to its native state is not due to trivial chemical reactions that could possibly occur upon prolonged incubation in the denaturant. (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra, limited proteolytic digestion, and fluorescence data suggest that the misfolded state(s) of nFGF-1 has structural features resembling that of the denatured state(s). GroEL, in the presence of ATP, is observed to rescue the protein from being trapped in the misfolded state(s). (1)H-(15)N HSQC data of nFGF-1, acquired in the denatured state(s) (in 8 m urea), suggest that the protein undergoes subtle time-dependent structural changes in the denaturant. To our knowledge, this report for the first time demonstrates that the commitment to adapt unproductive pathways leading to protein misfolding/aggregation occurs in the denatured state ensemble.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Animais , Chaperonina 60/farmacologia , Desnaturação Proteica , Salamandridae , Fatores de Tempo , Ureia/farmacologia
14.
Biophys J ; 85(1): 459-72, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829501

RESUMO

Acidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all beta-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96 M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96 M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn(+) Cl(-)) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/classificação , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Sequência de Aminoácidos , Animais , Cromatografia em Gel , Medição da Troca de Deutério , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Notophthalmus viridescens , Conformação Proteica , Desnaturação Proteica , Espectrometria de Fluorescência , Relação Estrutura-Atividade
15.
J Biol Chem ; 278(20): 17701-9, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12584201

RESUMO

Acidic fibroblast growth factor from newt (Notopthalmus viridescens) is a approximately 15-kDa, all beta-sheet protein devoid of disulfide bonds. In the present study, we investigate the effects of 2,2,2-trifluoroethanol (TFE) on the structure of newt acidic fibroblast growth factor (nFGF-1). The protein aggregates maximally in 10% (v/v) TFE. Congo red and thioflavin T binding experiments suggest that the aggregates induced by TFE have properties resembling the amyloid fibrils. Transmission electron microscopy and x-ray fiber diffraction data show that the fibrils (induced by TFE) are straight, unbranched, and have a cross-beta structure with an average diameter of 10-15 A. Preformed fibrils (induced by TFE) of nFGF-1 are observed to seed amyloid-like fibril formation in solutions containing the protein (nFGF-1) in the native beta-barrel conformation. Fluorescence, far-UV CD, anilino-8-napthalene sulfonate binding, multidimensional NMR, and Fourier transformed infrared spectroscopy data reveal that formation of a partially structured intermediate state(s) precedes the onset of the fibrillation process. The native beta-barrel structure of nFGF-1 appears to be disrupted in the partially structured intermediate state(s). The protein in the partially structured intermediate state(s) is found to be "sticky" with a solvent-exposed non-polar surface(s). Amyloid fibril formation appears to occur due to coalescence of the protein in the partially structured intermediate state(s) through solvent-exposed non-polar surfaces and intermolecular beta-sheet formation among the extended, linear beta-strands in the protein.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fator 1 de Crescimento de Fibroblastos/química , Naftalenossulfonato de Anilina/química , Animais , Benzotiazóis , Dicroísmo Circular , Vermelho Congo/farmacologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Corantes Fluorescentes/farmacologia , Isótopos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Salamandridae , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Tiazóis/farmacologia , Fatores de Tempo , Raios Ultravioleta , Difração de Raios X
16.
Biochemistry ; 41(51): 15350-9, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12484774

RESUMO

The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding.


Assuntos
Deutério/química , Fator 1 de Crescimento de Fibroblastos/química , Prótons , Amidas/química , Humanos , Ligação de Hidrogênio , Cinética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Receptores Proteína Tirosina Quinases/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/química , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Ureia/química
17.
J Biol Chem ; 277(48): 46424-32, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12205097

RESUMO

The three-dimensional solution structure of an acidic fibroblast growth factor (nFGF-1) from the newt (Notophthalmus viridescens) is determined using multidimensional NMR techniques. Complete assignment of all the atoms ((1)H, (15)N, and (13)C) has been achieved using a variety of triple resonance experiments. 50 structures were calculated using hybrid distance geometry-dynamical simulated annealing technique with a total of 1359 constraints. The atomic root mean square distribution for the backbone atoms in the structured region is 0.60 A. The secondary structural elements include 12 beta-strands arranged antiparallely into a beta-barrel structure. The protein (nFGF-1) exists in a monomeric state upon binding to the ligand, sucrose octa sulfate (SOS), in a stoichiometric ratio of 1:1. The SOS binding site consists of a dense cluster of positively charged residues located at the C-terminal end of the molecule. The conformational stabilities of nFGF-1 and its structural and functional homologue from the human source (hFGF-1) are drastically different. The differential stabilities of nFGF-1 and hFGF-1 are attributed to the differences in the number of hydrogen bonds and the presence of solvent inaccessible cavities in the two proteins.


Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Notophthalmus viridescens/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fator 1 de Crescimento de Fibroblastos/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
18.
Protein Sci ; 11(5): 1050-61, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11967362

RESUMO

Oligomerization of fibroblast growth factors (FGFs) induced on binding to heparin or heparan sulfate proteoglycan is considered to be crucial for receptor activation and initiation of biological responses. To gain insight into the mechanism of activation of the receptor by FGFs, in the present study we investigate the effect(s) of interaction of a heparin analog, sucrose octasulfate (SOS), on the structure, stability, and biological activities of a recombinant acidic FGF from Notophthalmus viridescens (nFGF-1). SOS is found to bind to nFGF-1 and significantly increase the thermodynamic stability of the protein. Using a variety of techniques such as size-exclusion chromatography, sedimentation velocity, and multidimensional nuclear magnetic resonance (NMR) spectroscopy, it is shown that binding of SOS to nFGF-1 retains the protein in its monomeric state. In its monomeric state (complexed to SOS), n-FGF-1 shows significant cell proliferation activity. (15)N and (1)H chemical shift perturbation and the intermolecular nuclear Overhauser effects (NOEs) between SOS and nFGF-1 reveal that the ligand binds to the dense, positively charged cluster located in the groove enclosed by beta-strands 10 and 11. In addition, molecular modeling based on the NOEs observed for the SOS-nFGF-1 complex, indicates that SOS and heparin share a common binding site on the protein. In conclusion, the results of the present study clearly show that heparin-induced oligomerization of nFGF-1 is not mandatory for its cell proliferation activity.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Sacarose/análogos & derivados , Animais , Sítios de Ligação , Cromatografia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Mitógenos/metabolismo , Notophthalmus viridescens , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA