Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(13): 5507-5513, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961992

RESUMO

Quartz-crystal-microbalance (QCM) biosensor is a typical label-free biosensor, and its sensitivity can be greatly improved by removing electrodes and wires that would be otherwise attached to the surfaces of the quartz resonator. The wireless-electrodeless QCM biosensor was then developed using a microelectro-mechanical systems (MEMS) process, although challenges remain in the sensitivity, the coupling efficiency, and the miniaturization (or mass production). In this study, we establish a MEMS process to obtain a large number of identical ultrasensitive and highly efficient sensor chips with dimensions of 6 mm square. The fundamental shear resonance frequency of the thinned AT-cut quartz resonator packaged in the microchannel exceeds 160 MHz, which is excited by antennas deposited on inner walls of the microchannel, significantly improving the electro-mechanical coupling efficiency in the wireless operation. The high sensitivity of the developed MEMS QCM biosensors is confirmed by the immunoglobulin G (IgG) detection using protein A and ZZ-tag displaying a bionanocapsule (ZZ-BNC), where we find that the ZZ-BNC can provide more effective binding sites and higher affinity to the target molecules, indicating a further enhancement in the sensitivity of the MEMS QCM biosensor. We then perform the label-free C-reactive protein (CRP) detection using the ZZ-BNC-functionalized MEMS QCM biosensor, which achieves a detection limit of 1 ng mL-1 or less even with direct detection.


Assuntos
Técnicas Biossensoriais , Sistemas Microeletromecânicos , Quartzo/química , Proteína C-Reativa , Miniaturização , Técnicas Biossensoriais/métodos , Técnicas de Microbalança de Cristal de Quartzo/métodos
2.
Anal Chem ; 91(15): 9398-9402, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264405

RESUMO

Label-free biosensors, including conventional quartz-crystal-microbalance (QCM) biosensors, are seriously affected by nonspecific adsorption of contaminants involved in analyte solution, and it is exceptionally difficult to extract the sensor responses caused only by the targets. In this study, we reveal that this difficulty can be overcome with an ultrahigh-frequency, wireless QCM biosensor. The sensitivity of a QCM biosensor dramatically improves when the quartz resonator is thinned, which also makes the resonance frequency higher, causing high-speed surface movement. Contaminants weakly (nonspecifically) interact with the quartz surface, but they fail to follow the fast surface movement and cannot be detected as the loaded mass. The targets are, however, tightly captured by the receptor proteins immobilized on the surface, and they can move with the surface, contributing to the loaded mass and decreasing the resonant frequency. We have developed a MEMS QCM biosensor in which an AT-cut quartz resonator, 26 µm thick, is packaged without fixing, and we demonstrate this phenomenon by comparing the frequency changes of the fundamental (∼64 MHz) and ninth (∼576 MHz) modes. At ultrahigh-frequency operation with the ninth mode, the sensor response is independent of the amount of impurity proteins, and the binding affinity is unchanged. We then applied this method to the label-free and sandwich-free, direct detection of C-reactive protein (CRP) in serum and confirmed its applicability.


Assuntos
Técnicas Biossensoriais/métodos , Sistemas Microeletromecânicos , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Biomarcadores/análise , Técnicas Biossensoriais/normas , Proteína C-Reativa/análise , Quartzo
3.
Langmuir ; 34(19): 5474-5479, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29697982

RESUMO

Unlike previous in vitro measurements where Amyloid ß (Aß) aggregation was studied in bulk solutions, we detect the structure change of the Aß aggregate on the surface of a wireless quartz-crystal-microbalance biosensor, which resembles more closely the aggregation process on the cell membrane. Using a 58 MHz quartz crystal, we monitored changes in the viscoelastic properties of the aggregate formed on the quartz surface from monomers to oligomers and then to fibrils, involving up to the 7th overtone mode (406 MHz). With atomic-force microscopy observations, we found a significant stiffness increase as well as thinning of the protein layer during the structure change from oligomer to fibrils at 20 h, which indicates that the stiffness of the fibril is much higher. Viscoelasticity can provide a significant index of fibrillation and can be useful for evaluating inhibitory medicines in drug development.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Peptídeos beta-Amiloides/química , Técnicas Biossensoriais/instrumentação , Elasticidade , Fragmentos de Peptídeos/química , Viscosidade
4.
Biosens Bioelectron ; 33(1): 139-45, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22257734

RESUMO

A resonance acoustic microbalance with a naked-embedded quartz (RAMNE-Q) is realized by a microfabrication method, aiming at broader applications of quartz-crystal microbalance (QCM) biosensors. The RAMNE-Q biosensor consists of three layers; a silicon layer with an engraved microchannel and sandwiching glass layers. The naked AT-cut quartz resonator of 9.3 or 28.5 µm thick is located in the microchannel and supported by the silicon micropillars and semicircular walls without fixing, and it is encapsulated by the rigid body. Cupper antennas are used for generating and receiving electromagnetic fields to excite and detect the shear vibration of the quartz oscillator during the solution flow, thereby achieving the noncontact measurement of the resonance frequency. Because of the isolated resonator, the Q factor is high enough (about 1500 at 170-180 MHz) even in the flowing solution. We succeeded in detecting 1 ng/ml human immunoglobulin G in phosphate-buffered-saline solution via Staphylococcus aureus protein A immobilized nonspecifically on the quartz surfaces, demonstrating the high sensitivity and high signal-to-noise ratio of the RAMNE-Q biosensor. It does not require electrodes and is a replacement-free biosensor, and its reusability is confirmed.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoglobulina G/análise , Microtecnologia , Técnicas de Microbalança de Cristal de Quartzo , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA