Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38533539

RESUMO

BACKGROUND: Recent studies have indicated the importance of muscle quality in addition to muscle quantity in sarcopenia pathophysiology. Intramuscular adipose tissue (IMAT), which originates from mesenchymal progenitors (MPs) in adult skeletal muscle, is a key factor affecting muscle quality in older adults, suggesting that controlling IMAT formation is a promising therapeutic strategy for sarcopenia. However, the molecular mechanism underlying IMAT formation in older adults has not been clarified. We recently found that the vitamin D receptor (VDR) is highly expressed in MPs in comparison to myotubes (P = 0.028, N = 3), indicating a potential role of vitamin D signalling in MPs. In this study, we aimed to clarify the role of vitamin D signalling in MP kinetics, with a focus on adipogenesis. METHODS: MPs isolated from mouse skeletal muscles were subjected to adipogenic differentiation conditions with or without vitamin D (1α,25(OH)2D3, 100 nM) for 7 days, and adipogenicity was evaluated based on adipogenic marker expression. For in vivo analysis, tamoxifen-inducible MP-specific VDR-deficient (VdrMPcKO) mice were newly developed to investigate whether lack of vitamin D signalling in MPs is involved in IMAT formation. To induce muscle atrophy, VdrMPcKO male mice were subjected to tenotomy of the gastrocnemius muscle, and then muscle weight, myofibre cross-sectional area, adipogenic marker expression, and fatty infiltration into the muscle were evaluated at 3 weeks after operation (N = 3-4). In addition, a vitamin D-deficient diet was provided to wild-type male mice (3 and 20 months of age, N = 5) for 3 months to investigate whether vitamin D deficiency causes IMAT formation. RESULTS: Vitamin D treatment nearly completely inhibited adipogenesis of MPs through Runx1-mediated transcriptional modifications of early adipogenic factors such as PPARγ (P = 0.0031) and C/EBPα (P = 0.0027), whereas VDR-deficient MPs derived from VdrMPcKO mice differentiated into adipocytes even in the presence of vitamin D (P = 0.0044, Oil-Red O+ area). In consistency with in-vitro findings, VdrMPcKO mice and mice fed a vitamin D-deficient diet exhibited fat deposition in atrophied (P = 0.0311) and aged (P = 0.0216) skeletal muscle, respectively. CONCLUSIONS: Vitamin D signalling is important to prevent fate decision of MPs towards the adipogenic lineage. As vitamin D levels decline with age, our data indicate that decreased vitamin D levels may be one of the causes of IMAT formation in older adults, and vitamin D signalling may be a novel therapeutic target for sarcopenia.

2.
EMBO Mol Med ; 16(1): 10-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177530

RESUMO

Endocrine resistance is a crucial challenge in estrogen receptor alpha (ERα)-positive breast cancer (BCa). Aberrant alteration in modulation of E2/ERα signaling pathway has emerged as the putative contributor for endocrine resistance in BCa. Herein, we demonstrate that MYSM1 as a deubiquitinase participates in modulating ERα action via histone and non-histone deubiquitination. MYSM1 is involved in maintenance of ERα stability via ERα deubiquitination. MYSM1 regulates relevant histone modifications on cis regulatory elements of ERα-regulated genes, facilitating chromatin decondensation. MYSM1 is highly expressed in clinical BCa samples. MYSM1 depletion attenuates BCa-derived cell growth in xenograft models and increases the sensitivity of antiestrogen agents in BCa cells. A virtual screen shows that the small molecule Imatinib could potentially interact with catalytic MPN domain of MYSM1 to inhibit BCa cell growth via MYSM1-ERα axis. These findings clarify the molecular mechanism of MYSM1 as an epigenetic modifier in regulation of ERα action and provide a potential therapeutic target for endocrine resistance in BCa.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Moduladores de Receptor Estrogênico/farmacologia , Moduladores de Receptor Estrogênico/uso terapêutico , Histonas/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Transativadores/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
3.
PLoS One ; 18(12): e0295288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091304

RESUMO

Vitamin D (VD) exerts a wide variety of biological functions including calcemic activity. VD nutritional status is closely associated with the onset and development of chronic diseases. To develop a VD analog with the desired VD activity but without calcemic activity, we screened synthetic VDR antagonists. We identified 1α,25-dihydroxyvitamin D3-26-23-lactams (DLAM)-2a-d (DLAM-2s) as nuclear vitamin D receptor (VDR) ligands in a competitive VDR binding assay for 1α,25(OH)2 vitamin D3 (1α,25(OH)2D3), and DLAM-2s showed an antagonistic effect on 1α,25(OH)2 D3-induced cell differentiation in HL60 cells. In a luciferase reporter assay in which human VDR was exogenously expressed in cultured COS-1 cells, DLAM-2s acted as transcriptional antagonists. Consistently, DLAM-2s had an antagonistic effect on the 1α,25(OH)2D3-induced expression of a known VD target gene [Cytochrome P450 24A1 (CYP24A1)], and VDR bound DLAM-2s was recruited to an endogenous VD response element in chromatin in human keratinocytes (HaCaT cells) endogenously expressing VDR. In an ATAC-seq assay, the effects of 1α,25(OH)2 D3 and DLAM-2b on chromatin reorganization were undetectable in HaCaT cells, while the effect of an androgen receptor (AR) antagonist (bicalutamide) was confirmed in prostate cancer cells (LNCaP) expressing endogenous AR. However, whole genome analysis using RNA-seq and ATAC (Assay for Transposase Accessible Chromatin)-seq revealed differential gene expression profiles regulated by DLAM-2b versus 1α,25(OH)2D3. The upregulated and downregulated genes only partially overlapped between cells treated with 1α,25(OH)2D3 and those treated with DLAM-2b. Thus, the present findings illustrate a novel VDR ligand with gene regulatory activity differing from that of 1α,25(OH)2D3.


Assuntos
Receptores de Calcitriol , Vitamina D , Masculino , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Ligantes , Vitamina D/farmacologia , Vitaminas , Cromatina , Vitamina D3 24-Hidroxilase/genética
4.
J Bone Metab ; 30(3): 219-229, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37718900

RESUMO

Vitamin D (VD) exerts a wide variety of biological actions in addition to its well-known roles in calcium homeostasis. Nutritional VD deficiency induces rachitic abnormalities in growing children and osteomalacia in adults, and it has been proposed to underlie the onset and development of multiple non-communicable chronic diseases. Therefore, the administration of VD or synthetic VD analogues represents a promising therapeutic strategy; indeed, VD and a VD agonist have shown clinical promise in mitigating osteoporosis and symptoms of insufficient calcium intake. However, even though high doses of VD analogues have shown pre-clinical efficacy against several diseases, including cancers, they have not yet had wide-spread clinical success. This difference may be due to limitation of clinical doses in light of the inherent calcemic action of VD. An approach to overcome this problem involves the development of VD analogues with lower calcemic activity, which could be administered in high doses to attenuate the onset and progress of disease. In a similar strategy, selective estrogen receptor modulators have had success as anti-osteoporosis drugs, and they have shown benefit for other estrogen target organs by serving as partial antagonists or agonists of estrogen receptor α. It is thus conceivable to generate synthetic partial antagonists or agonists for the VD receptor (VDR) that would exert beneficial effects on bone and other VD target organs. In this review, we discuss the molecular basis of the development of such synthetic VDR ligands from the viewpoint of roles of VDR in gene regulation.

5.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37673445

RESUMO

Vitamin D receptor (VDR) is essential for hair follicle homeostasis as its deficiency induces hair loss, although the mechanism involved remains unknown. Our research shows that, in Vdr-knockout mice, the hair cycle is halted during the catagen stage, preceding alopecia. In addition, in Vdr-knockout hair follicles, epithelial strands that normally regress during the catagen phase persist as "surviving epithelial strands." Single-cell RNA sequencing analysis suggests that these surviving epithelial strands are formed by cells in the lower part of the hair follicle. These findings emphasize the importance of the regression phase in hair follicle regeneration and establish VDR as a regulator of the catagen stage.


Assuntos
Folículo Piloso , Receptores de Calcitriol , Animais , Camundongos , Morte Celular , Homeostase , Camundongos Knockout , Receptores de Calcitriol/genética
6.
Nutrition ; 115: 112117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37531790

RESUMO

OBJECTIVES: During musculoskeletal development, the vitamin D endocrine system is crucial, because vitamin D-dependent calcium absorption is a major regulator of bone growth. Because exercise regimens depend on bone mass, the direct action of active vitamin D (1,25-dihydroxyvitamin D3 [1,25(OH)2D3]) on musculoskeletal performance should be determined. METHODS: To evaluate the effect of 1,25(OH)2D3 on muscle tissue, the vitamin D receptor (Vdr) gene was genetically inactivated in mouse skeletal muscle and the role of 1,25(OH)2D3-VDR signaling on locomotor function was assessed. The direct action of 1,25(OH)2D3 on muscle development was determined using cultured C2C12 cells with myogenic differentiation. RESULTS: The lack of Vdr activity in skeletal muscle decreased spontaneous locomotor activity, suggesting that the skeletal muscle performance depended on 1,25(OH)2D3-VDR signaling. Bone phenotypes, reduced femoral bone mineral density, and accelerated osteoclast bone resorption were confirmed in mice lacking skeletal muscle Vdr activity. In vitro study revealed that the treatment with 1,25(OH)2D3 decreased the cellular adenosine triphosphate (ATP)-to-adenosine monophosphate ratio without reducing ATP production. Remarkably, protein expressions of connexin 43, an ATP releaser to extracellular space, and ATP metabolizing enzyme ectonucleotide pyrophosphatase phosphodiesterase 1 were increased responding to 1,25(OH)2D3 treatment. Furthermore, the concentration of pyrophosphate in the culture medium, which inhibits tissue calcification, was increased with 1,25(OH)2D3 treatment. In the presence of 1,25(OH)2D3-VDR signaling, calcium accumulation was suppressed in both muscle samples isolated from mice and in cultured C2C12 cells. CONCLUSIONS: This study dissected the physiological functions of 1,25(OH)2D3-VDR signaling in muscle and revealed that regulation of ATP dynamics is involved in sustaining locomotor function.

7.
Front Cell Dev Biol ; 11: 1083486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025180

RESUMO

Androgen and androgen deprivation (castration) therapies, including androgen receptor antagonists, are clinically used to treat patients with prostate cancer. However, most hormone-dependent prostate cancer patients progress into a malignant state with loss of hormone-dependency, known as castration (drug)-resistant prostate cancer (CRPC), after prolong androgen-based treatments. Even in the CRPC state with irreversible malignancy, androgen receptor (AR) expression is detectable. An epigenetic transition to CRPC induced by the action of AR-mediated androgen could be speculated in the patients with prostate cancer. Androgen receptors belongs to the nuclear receptor superfamily with 48 members in humans, and acts as a ligand-dependent transcriptional factor, leading to local chromatin reorganization for ligand-dependent gene regulation. In this review, we discussed the transcriptional/epigenetic regulatory functions of AR, with emphasis on the clinical applications of AR ligands, AR protein co-regulators, and AR RNA coregulator (enhancer RNA), especially in chromatin reorganization, in patients with prostate cancer.

8.
Cell Death Dis ; 14(3): 194, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906615

RESUMO

Hepatocellular carcinoma (HCC) is a common solid tumor with high rate of recurrence and mortality. Anti-angiogenesis drugs have been used for the therapy of HCC. However, anti-angiogenic drug resistance commonly occurs during HCC treatment. Thus, identification of a novel VEGFA regulator would be better understanding for HCC progression and anti-angiogenic therapy resistance. Ubiquitin specific protease 22 (USP22) as a deubiquitinating enzyme, participates in a variety of biological processes in numerous tumors. While the molecular mechanism underlying the effects of USP22 on angiogenesis is still needed to be clarified. Here, our results demonstrated that USP22 acts as a co-activator of VEGFA transcription. Importantly, USP22 is involved in maintenance of ZEB1 stability via its deubiquitinase activity. USP22 was recruited to ZEB1-binding elements on the promoter of VEGFA, thereby altering histone H2Bub levels, to enhance ZEB1-mediated VEGFA transcription. USP22 depletion decreased cell proliferation, migration, Vascular Mimicry (VM) formation, and angiogenesis. Furthermore, we provided the evidence to show that knockdown of USP22 inhibited HCC growth in tumor-bearing nude mice. In addition, the expression of USP22 is positively correlated with that of ZEB1 in clinical HCC samples. Our findings suggest that USP22 participates in the promotion of HCC progression, if not all, at least partially via up-regulation of VEGFA transcription, providing a novel therapeutic target for anti-angiogenic drug resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ubiquitina Tiolesterase , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Camundongos , Inibidores da Angiogênese/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , Camundongos Nus , Ubiquitina Tiolesterase/genética , Humanos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
9.
J Steroid Biochem Mol Biol ; 230: 106275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854350

RESUMO

Recently, we generated type II rickets model rats, including Vdr(R270L), Vdr(H301Q), Vdr(R270L/H301Q), and Vdr-knockout (KO), by genome editing. All generated animals showed symptoms of rickets, including growth retardation and abnormal bone formation. Among these, only Vdr-KO rats exhibited abnormal skin formation and alopecia. To elucidate the relationship between VDR function and rickets symptoms, each VDR was expressed in human HaCaT-VDR-KO cells using an adenovirus vector. We also constructed an adenovirus vector expressing VDR(V342M) corresponding to human VDR(V346M) which causes alopecia. We compared the nuclear translocation of VDRs after adding 1α,25-dihydroxyvitamin D3 (1,25D3) or 25-hydroxyvitamin D3 (25D3) at final concentrations of 10 and 100 nM, respectively. Both 25D3 and 1,25D3 induced the nuclear translocation of wild type VDR and VDR(V342M). Conversely, VDR(R270L) translocation was observed in the presence of 100 nM 25D3, with almost no translocation following treatment with 10 nM 1,25D3. VDR(R270L/H301Q) failed to undergo nuclear translocation. These results were consistent with their affinity for each ligand. Notably, VDR(R270L/H301Q) may exist in an unliganded form under physiological conditions, and factors interacting with VDR(R270L/H301Q) may be involved in the hair growth cycle. Thus, this novel system using an adenovirus vector could be valuable in elucidating vitamin D receptor functions.


Assuntos
Receptores de Calcitriol , Raquitismo , Humanos , Ratos , Animais , Receptores de Calcitriol/genética , Vitamina D/farmacologia , Calcifediol , Alopecia/genética , Adenoviridae/genética
10.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834927

RESUMO

Bile acids are major components of bile; they emulsify dietary lipids for efficient digestion and absorption and act as signaling molecules that activate nuclear and membrane receptors. The vitamin D receptor (VDR) is a receptor for the active form of vitamin D and lithocholic acid (LCA), a secondary bile acid produced by the intestinal microflora. Unlike other bile acids that enter the enterohepatic circulation, LCA is poorly absorbed in the intestine. Although vitamin D signaling regulates various physiological functions, including calcium metabolism and inflammation/immunity, LCA signaling remains largely unknown. In this study, we investigated the effect of the oral administration of LCA on colitis in a mouse model using dextran sulfate sodium (DSS). Oral LCA decreased the disease activity of colitis in the early phase, which is a phenotype associated with the suppression of histological injury, such as inflammatory cell infiltration and goblet cell loss. These protective effects of LCA were abolished in VDR-deleted mice. LCA decreased the expression of inflammatory cytokine genes, but this effect was at least partly observed in VDR-deleted mice. The pharmacological effect of LCA on colitis was not associated with hypercalcemia, an adverse effect induced by vitamin D compounds. Therefore, LCA suppresses DSS-induced intestinal injury in its action as a VDR ligand.


Assuntos
Colite , Ácido Litocólico , Receptores de Calcitriol , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Colite/induzido quimicamente , Sulfato de Dextrana , Ácido Litocólico/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Calcitriol/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(4): e2218032120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669097

RESUMO

Sarcopenia is distinct from normal muscle atrophy in that it is closely related to a shift in the muscle fiber type. Deficiency of the anabolic action of androgen on skeletal muscles is associated with sarcopenia; however, the function of the androgen receptor (AR) pathway in sarcopenia remains poorly understood. We generated a mouse model (fast-twitch muscle-specific AR knockout [fmARKO] mice) in which the AR was selectively deleted in the fast-twitch muscle fibers. In young male mice, the deletion caused no change in muscle mass, but it reduced muscle strength and fatigue resistance and induced a shift in the soleus muscles from fast-twitch fibers to slow-twitch fibers (14% increase, P = 0.02). After middle age, with the control mice, the male fmARKO mice showed much less muscle function, accompanied by lower hindlimb muscle mass; this phenotype was similar to the progression of sarcopenia. The bone mineral density of the femur was significantly reduced in the fmARKO mice, indicating possible osteosarcopenia. Microarray and gene ontology analyses revealed that in male fmARKO mice, there was downregulation of polyamine biosynthesis-related geneswhich was confirmed by liquid chromatography-tandem mass spectrometry assay and the primary cultured myofibers. None of the AR deletion-related phenotypes were observed in female fmARKO mice. Our findings showed that the AR pathway had essential muscle type- and sex-specific roles in the differentiation toward fast-twitch fibers and in the maintenance of muscle composition and function. The AR in fast-twitch muscles was the dominant regulator of muscle fiber-type composition and muscle function, including the muscle-bone relationship.


Assuntos
Doenças Musculares , Sarcopenia , Camundongos , Masculino , Feminino , Animais , Sarcopenia/genética , Sarcopenia/metabolismo , Receptores Androgênicos/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Doenças Musculares/metabolismo , Fenótipo , Camundongos Knockout
13.
Nat Commun ; 13(1): 7194, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424386

RESUMO

Exercise results in mechanical loading of the bone and stimulates energy expenditure in the adipose tissue. It is therefore likely that the bone secretes factors to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is known to be expressed in the bone, it is upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Here, we show that systemic IL-11 deletion (IL-11-/-) results in reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. At the same time, the enhancement of bone resorption by mechanical unloading was unaffected. Unexpectedly, IL-11-/- mice have increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice have reduced serum IL-11 levels, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11-/- mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre;IL-11fl/fl did not exhibit any abnormalities. We demonstrate that osteoblast/osteocyte-derived IL-11 controls both osteogenesis and systemic adiposity in response to mechanical loading, an important insight for our understanding of osteoporosis and metabolic syndromes.


Assuntos
Interleucina-11 , Osteócitos , Osteogênese , Animais , Camundongos , Adipogenia , Interleucina-11/genética , Obesidade , Osteoblastos , Camundongos Knockout
14.
Inflamm Regen ; 42(1): 46, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324153

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is associated with immune dysfunction. UBASH3A as a negative regulator of T cell receptors (TCRs) signaling is a susceptible factor in RA. The aim of this study was to determine the role of UBASH3A in RA pathogenesis, by assessing the role of super-enhancer (SE) in the control of UBASH3A expression in CD4+ T cells and the contribution of the latter in proinflammatory cytokine production in patients with RA. METHODS: UBASH3A mRNA and protein levels were quantified by PCR and western blotting, respectively. The cells were treated with a locked nucleic acid to inhibit enhancer RNA (eRNA) expression. Chromatin immunoprecipitation was used to identify the factors recruited to UBASH3A loci displaying SE architecture. CD4+ T cells were transfected with UBASH3A plasmids, and cytokine levels were measured by a cytometric bead array. RESULTS: UBASH3A was extracted as a RA susceptibility gene associated with SNPs in the SEs that are highly expressed in CD4+ T cells by in silico screening. UBASH3A mRNA and protein expression levels were lower in CD4+ T cells of RA patients than in the control. eRNA_1 and eRNA_3 knockdown reduced UBASH3A mRNA levels. RA patients exhibited accumulation of BTB and CNC homology 2 (BACH2), the silencing transcription factor, at the UBASH3A loci in CD4+ T cells, but not the SE-defining factor, mediator complex subunit 1 (MED1)/bromodomain 4 (BRD4). However, opposite changes were observed in the control. Stimulation of TCRs expressed on CD4+ T cells of RA patients resulted in interleukin (IL)-6 production, while UBASH3A over-expression significantly inhibited the production. CONCLUSIONS: In RA, transcription of UBASH3A is suppressed via epigenetic regulation of SE in CD4+ T cells. Low UBASH3A levels result in excessive TCR signal activation with subsequent enhancement of IL-6 production.

15.
J Cachexia Sarcopenia Muscle ; 13(6): 2961-2973, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36237134

RESUMO

BACKGROUND: Vitamin D is an essential nutrient in musculoskeletal function; however, its relationship to sarcopenia remains ambiguous, and the mechanisms and targets of vitamin D activity have not been elucidated. This study aimed to clarify the role of vitamin D in mature skeletal muscle and its relationship with sarcopenia. METHODS: This epidemiological study included 1653 community residents who participated in both the fifth and seventh waves of the National Institute for Longevity Sciences, Longitudinal Study of Aging and had complete background data. Participants were classified into two groups: vitamin D-deficient (serum 25-hydroxyvitamin D < 20 ng/mL) and non-deficient (serum 25-hydroxyvitamin D ≥ 20 ng/mL); they underwent propensity-score matching for background factors (age, sex, height, weight, comorbidities, smoker, alcohol intake, energy intake, vitamin D intake, steps, activity, season and sarcopenia). Changes in muscle strength and mass over the 4-year period were compared. For basic analysis, we generated Myf6CreERT2 Vitamin D Receptor (VDR)-floxed (VdrmcKO ) mice with mature muscle fibre-specific vitamin D receptor knockout, injected tamoxifen into 8-week-old mice and analysed various phenotypes at 16 weeks of age. RESULTS: Grip strength reduction was significantly greater in the deficient group (-1.55 ± 2.47 kg) than in the non-deficient group (-1.13 ± 2.47 kg; P = 0.019). Appendicular skeletal muscle mass reduction did not differ significantly between deficient (-0.05 ± 0.79 kg) and non-deficient (-0.01 ± 0.74 kg) groups (P = 0.423). The incidence of new cases of sarcopenia was significantly higher in the deficient group (15 vs. 5 cases; P = 0.039). Skeletal muscle phenotyping of VdrmcKO mice showed no significant differences in muscle weight, myofibre percentage or myofibre cross-sectional area; however, both forelimb and four-limb muscle strength were significantly lower in VdrmcKO mice (males: forelimb, P = 0.048; four-limb, P = 0.029; females: forelimb, P < 0.001; four-limb, P < 0.001). Expression profiling revealed a significant decrease in expression of sarcoendoplasmic reticulum Ca2+ -ATPase (SERCA) 1 (P = 0.019) and SERCA2a (P = 0.049) genes in the VdrmcKO mice. In contrast, expression of non-muscle SERCA2b and myoregulin genes showed no changes. CONCLUSIONS: Vitamin D deficiency affects muscle strength and may contribute to the onset of sarcopenia. Vitamin D-VDR signalling has minimal influence on the regulation of muscle mass in mature myofibres but has a significant influence on muscle strength.


Assuntos
Sarcopenia , Deficiência de Vitamina D , Masculino , Feminino , Humanos , Camundongos , Animais , Receptores de Calcitriol , Camundongos Knockout , Estudos Longitudinais , Sarcopenia/genética , Sarcopenia/epidemiologia , Vitamina D , Vitaminas , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/metabolismo
16.
Arthritis Res Ther ; 24(1): 222, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114544

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) patients present with abnormal methylation patterns in their fibroblast-like synoviocytes (FLS). Given that DNA demethylation is critical for producing DNA methylation patterns, we hypothesized that DNA demethylation may facilitate RA progression. Therefore, we designed this study to examine the role of DNA dioxygenase family, Ten-Eleven translocation (TET1/2/3), in the pathological process of RA. METHODS: Synovial tissues and FLS were obtained from patients with RA and Osteoarthritis. K/BxN serum-induced arthritis was induced in Wild-type (WT) and TET3 heterozygous-deficient (TET3+/-) C57BL/6 mice. RESULTS: We found that both TET3 and 5-hydroxymethylcytosine (5hmC) were upregulated in synovitis tissues from RA patients and confirmed this upregulation in the cultured FLS derived from synovitis tissues. Tumor necrosis factor α (TNFα) upregulated TET3 and 5hmC levels in cultured FLS, and the stimulated FLS exhibited high cell mobility with increased transcription of cellular migration-related factors such as C-X-C motif chemokine ligand 8 (CXCL8) and C-C motif chemokine ligand 2 (CCL2) in a TET3-dependent manner. In addition, TET3 haploinsufficiency lowered RA progression in a mouse model of serum-induced arthritis. CONCLUSIONS: Based on these findings, we can assume that TET3-mediated DNA demethylation acts as an epigenetic regulator of RA progression.


Assuntos
Artrite Reumatoide , Dioxigenases/metabolismo , Sinovite , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Quimiocinas , DNA , Dioxigenases/genética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa
17.
Inflamm Regen ; 42(1): 43, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114571

RESUMO

BACKGROUND: Highly regulated gene expression program underlies osteogenesis of mesenchymal stem cells (MSCs), but the regulators in the program are not entirely identified. As enhancer RNAs (eRNAs) have recently emerged as a key regulator in gene expression, we assume a commitment of an eRNA in osteogenesis. METHODS: We performed in silico analysis to identify potential osteogenic microRNA (miRNA) gene predicted to be regulated by super-enhancers (SEs). SE inhibitor treatment and eRNA knocking-down were used to confirm the regulational mechanism of eRNA. miRNA function in osteogenesis was elucidated by miR mimic and inhibitor transfection experiments. RESULTS: miR-3129 was found to be located adjacent in a SE (osteoblast-specific SE_46171) specifically activated in osteoblasts by in silico analysis. A RT-quantitative PCR analysis of human bone marrow-derived MSC (hBMSC) cells showed that eRNA_2S was transcribed from the SE with the expression of miR-3129. Knockdown of eRNA_2S by locked nucleic acid as well as treatment of SE inhibitors JQ1 or THZ1 resulted in low miR-3129 levels. Overexpression of miR-3129 promoted hBMSC osteogenesis, while knockdown of miR-3129 inhibited hBMSC osteogenesis. Solute carrier family 7 member 11 (SLC7A11), encoding a bone formation suppressor, was upregulated following miR-3129-5p inhibition and identified as a target gene for miR-3129 during differentiation of hBMSCs into osteoblasts. CONCLUSIONS: miR-3129 expression is regulated by SEs via eRNA_2S and this miRNA promotes hBMSC differentiation into osteoblasts through downregulating the target gene SLC7A11. Thus, the present study uncovers a commitment of an eRNA via a miR-3129/SLC7A11 regulatory pathway during osteogenesis of hBMSCs.

18.
J Immunol ; 209(6): 1083-1094, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977797

RESUMO

Asthma is more common in females than males after adolescence. However, the mechanism of the sex bias in the prevalence of asthma remains unknown. To test whether sex steroid hormones have some roles in T cells during development of asthma, we analyzed airway inflammation in T cell-specific androgen receptor (AR)- and estrogen receptor (ER)-deficient mice. T cell-specific AR-deficient male mice developed severer house dust mite-induced allergic airway inflammation than did control male mice, whereas T cell-specific ERα- and ERß-deficient female mice exhibited a similar degree of inflammation as for control female mice. Furthermore, administration of dihydrotestosterone reduced cytokine production of Th2 cells from control, but not AR-deficient, naive T cells. Transfer of OT-II transgenic AR-deficient Th2 cells into wild-type mice induced severer allergic airway inflammation by OVA than transfer of control Th2 cells. Gene expression profiling suggested that the expression of genes related with cell cycle and Th2 differentiation was elevated in AR-deficient Th2 cells, whereas expression of dual specificity phosphatase (DUSP)-2, a negative regulator of p38, was downregulated. In addition, a chromatin immunoprecipitation assay suggested that AR bound to an AR motif in the 5' untranslated region of the Dusp2 gene in Th2 cells. Furthermore, the Dusp2 promoter with a wild-type AR motif, but not a mutated motif, was transactivated by dihydrotestosterone in a reporter assay. Finally, forced expression of DUSP-2 by retrovirus vector reduced IL-4 expression in Th2 cells. Thus, these results suggest that androgen signaling suppresses cytokine production of Th2 cells by inducing DUSP-2, explaining, in part, the sex bias of asthma after adolescence.


Assuntos
Asma , Hipersensibilidade , Regiões 5' não Traduzidas , Androgênios/metabolismo , Animais , Asma/genética , Asma/metabolismo , Di-Hidrotestosterona , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/metabolismo , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Células Th17/metabolismo , Células Th2/metabolismo
19.
Biochem Biophys Res Commun ; 625: 46-52, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944363

RESUMO

Human cyclin-dependent kinase inhibitor 3 (CDKN3) is a known oncogene in hepatocellular carcinoma (HCC) and its expression is promoted during tumor development. CDKN3 serves as a cell cycle regulator and its dysregulation is considered to be a causal factor for tumor progression. However, the molecular basis of the regulation of CDKN3 expression remains largely elusive. Using in silico approach, we identified CDKN3SE, a super enhancer (SE), and enhancer RNA (eRNA) candidates transcribed from this SE. Among the eRNA candidates, the expression of CDKN3eRNA was detected in the human HCC model cell line HepG2, and was found to facilitate the expression of CDKN3 without affecting the cell proliferation rate. In silico screening revealed two DNA-binding transcription factors, upstream stimulatory factor (USF) 1 and 2, involved in the regulation of CDKN3eRNA expression on CDKN3SE. A knock-down of USF1/USF2 expression in the HepG2 cells did not affect CDKN3eRNA expression, while the expression of CDKN3 was down-regulated. In a USF2 dominant negative HepG2 cell line generated by genome editing, a drastically altered cell shape and lowered cell proliferation rate were found; however, the expression of CDKN3eRNA appeared unaffected. Thus, the present study illustrated two regulators for CDKN3 expression: USF2, as a cell cycle-associated protein regulator, and CDKN3eRNA, as a cell cycle-unassociated RNA regulator.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Humanos , Neoplasias Hepáticas/patologia , Oncogenes , RNA
20.
Biosci Rep ; 42(5)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35510872

RESUMO

Vitamin D (VD) exerts a wide variety of actions via gene regulation mediated by the nuclear vitamin D receptor (VDR) under physiological and pathological settings. However, the known target genes of VDR appear unlikely to account for all VD actions. We used in silico and transcriptomic approaches in human cell lines to search for non-coding RNAs transcriptionally regulated by VD directly. Four long non-coding RNAs (lncRNAs), but no microRNAs (miRNAs), were found, supported by the presence of consensus VDR-binding motifs in the coding regions. One of these lncRNAs (AS-HSD17ß2) is transcribed from the antisense strand of the HSD17ß2 locus, which is also a direct VD target. AS-HSD17ß2 attenuated HSD17ß2 expression. Thus, AS-HSD17ß2 represents a direct lncRNA target of VD.


Assuntos
MicroRNAs , RNA Longo não Codificante , Estradiol Desidrogenases , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Vitamina D/genética , Vitamina D/farmacologia , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA