RESUMO
BACKGROUND: Studies have linked air pollution to lung cancer incidence and mortality, but few have compared these associations, which may differ due to cancer survival variations. We aimed to evaluate the association between long-term air pollution exposure and lung cancer incidence and compare findings with previous lung cancer mortality analyses within the same cohorts. METHODS: We analyzed four population-based administrative cohorts in Denmark (2000-2015), England (2011-2017), Norway (2001-2016) and Rome (2001-2015). We assessed residential exposure to annual average fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and warm-season ozone (O3) using Europe-wide land use regression models. We used Cox proportional hazard models to evaluate cohort-specific hazard ratios (HRs) and 95% confidence intervals (CIs) for lung cancer incidence identified using hospital admission records (English and Roman cohorts) or cancer registries (Danish and Norwegian cohorts). We evaluated the associations at low exposure levels using subset analyses and natural cubic splines. Cohort-specific HRs were pooled using random-effects meta-analyses, separately for incidence and mortality. RESULTS: Over 93,733,929 person-years of follow-up, 111,949 incident lung cancer cases occurred. Incident lung cancer was positively associated with PM2.5, NO2 and BC, and negatively associated with O3. The negative O3 association became positive after adjustment for NO2. Associations were almost identical or slightly stronger for lung cancer incidence than mortality in the same cohorts, with respective meta-analytic HRs (95% CIs) of 1.14 (1.06, 1.22) and 1.12 (1.02, 1.22) per 5 µg/m3 increase in PM2.5, and 1.10 (1.04, 1.16) and 1.09 (1.02, 1.16) per 10 µg/m3 increase in NO2. Positive associations persisted for both incidence and mortality at low pollution levels with similar magnitude. CONCLUSIONS: We found similarly elevated risks of lung cancer incidence and mortality in association with residential exposure to PM2.5, NO2 and BC in meta-analyses of four European administrative cohorts, which persisted at low pollution levels.
RESUMO
INTRODUCTION: While associations between ambient air pollution and respiratory health in chronic obstructive pulmonary disease (COPD) patients are well studied, little is known about individuals' personal exposure to pollution and associated health effects by source. AIM: To separate measured total personal exposure into indoor-generated and outdoor-generated pollution and use these improved metrics in health models for establishing more reliable associations with exacerbations and respiratory symptoms. METHODS: We enrolled a panel of 76 patients with COPD and continuously measured their personal exposure to particles and gaseous pollutants and location with portable monitors for 134 days on average. We collected daily health information related to respiratory symptoms through diary cards and peak expiratory flow (PEF). Mixed-effects models were applied to quantify the relationship between total, indoor-generated and outdoor-generated personal exposures to pollutants with exacerbation and symptoms occurrence and PEF. RESULTS: Exposure to nitrogen dioxide from both indoor and outdoor sources was associated with exacerbations and respiratory symptoms. We observed an increase of 33% (22%-45%), 19% (12%-18%) and 12% (5%-20%) in the odds of exacerbation for an IQR increase in total, indoor-generated and outdoor-generated exposures. For carbon monoxide, health effects were mainly attributed to indoor-generated pollution. While no associations were observed for particulate matter2.5 with COPD exacerbations, indoor-generated particles were associated with a significant decrease in PEF. CONCLUSIONS: Indoor-generated and outdoor-generated pollution can deteriorate COPD patients' health. Policy-makers, physicians and patients with COPD should note the importance of decreasing exposure equally to both source types to decrease risk of exacerbation.
RESUMO
Background: Heterogeneity in temperature-mortality relationships across locations may partly result from differences in the demographic structure of populations and their cause-specific vulnerabilities. Here we conduct the largest epidemiological study to date on the association between ambient temperature and mortality by age and cause using data from 532 cities in 33 countries. Methods: We collected daily temperature and mortality data from each country. Mortality data was provided as daily death counts within age groups from all, cardiovascular, respiratory, or noncardiorespiratory causes. We first fit quasi-Poisson regression models to estimate location-specific associations for each age-by-cause group. For each cause, we then pooled location-specific results in a dose-response multivariate meta-regression model that enabled us to estimate overall temperature-mortality curves at any age. The age analysis was limited to adults. Results: We observed high temperature effects on mortality from both cardiovascular and respiratory causes compared to noncardiorespiratory causes, with the highest cold-related risks from cardiovascular causes and the highest heat-related risks from respiratory causes. Risks generally increased with age, a pattern most consistent for cold and for nonrespiratory causes. For every cause group, risks at both temperature extremes were strongest at the oldest age (age 85 years). Excess mortality fractions were highest for cold at the oldest ages. Conclusions: There is a differential pattern of risk associated with heat and cold by cause and age; cardiorespiratory causes show stronger effects than noncardiorespiratory causes, and older adults have higher risks than younger adults.
RESUMO
Socioeconomic inequalities in the exposome have been found to be complex and highly context-specific, but studies have not been conducted in large population-wide cohorts from multiple countries. This study aims to examine the external exposome, encompassing individual and environmental factors influencing health over the life course, and to perform dimension reduction to derive interpretable characterization of the external exposome for multicountry epidemiological studies. Analyzing data from over 25 million individuals across seven European countries including 12 administrative and traditional cohorts, we utilized domain-specific principal component analysis (PCA) to define the external exposome, focusing on air pollution, the built environment, and air temperature. We conducted linear regression to estimate the association between individual- and area-level socioeconomic position and each domain of the external exposome. Consistent exposure patterns were observed within countries, indicating the representativeness of traditional cohorts for air pollution and the built environment. However, cohorts with limited geographical coverage and Southern European countries displayed lower temperature variability, especially in the cold season, compared to Northern European countries and cohorts including a wide range of urban and rural areas. The individual- and area-level socioeconomic determinants (i.e., education, income, and unemployment rate) of the urban exposome exhibited significant variability across the European region, with area-level indicators showing stronger associations than individual variables. While the PCA approach facilitated common interpretations of the external exposome for air pollution and the built environment, it was less effective for air temperature. The diverse socioeconomic determinants suggest regional variations in environmental health inequities, emphasizing the need for targeted interventions across European countries.
Assuntos
Expossoma , Fatores Socioeconômicos , Europa (Continente) , Humanos , Poluição do Ar , Exposição Ambiental , Estudos de CoortesRESUMO
BACKGROUND: Evidence suggests that air pollution modifies the association between heat and mortality. However, most studies have been conducted in cities without rural data. This time-series study examined potential effect modification of particulate matter (PM) and ozone (O3) on heat-related mortality using small-area data from five European countries, and explored the influence of area characteristics. METHODS: We obtained daily non-accidental death counts from both urban and rural areas in Norway, England and Wales, Germany, Italy, and the Attica region of Greece during the warm season (2000-2018). Daily mean temperatures and air pollutant concentrations were estimated by spatial-temporal models. Heat effect modification by air pollution was assessed in each small area by over-dispersed Poisson regression models with a tensor smoother between temperature and air pollution. We extracted temperature-mortality relationships at the 5th (low), 50th (medium), and 95th (high) percentiles of pollutant distributions. At each air pollution level, we estimated heat-related mortality for a temperature increase from the 75th to the 99th percentile. We applied random-effects meta-analysis to derive the country-specific and overall associations, and mixed-effects meta-regression to examine the influence of urban-rural and coastal typologies and greenness on the heat effect modification by air pollution. RESULTS: Heat-related mortality risks increased with higher PM levels, rising by 6.4% (95% CI: -2.0%-15.7%), 10.7% (2.6%-19.5%), and 14.1% (4.4%-24.6%) at low, medium, and high PM levels, respectively. This effect modification was consistent in urban and rural regions but more pronounced in non-coastal regions. In addition, heat-mortality associations were slightly stronger at high O3 levels, particularly in regions with low greenness. CONCLUSION: Our analyses of both urban and rural data indicate that air pollution may intensify heat-related mortality, particularly in non-coastal and less green regions. The synergistic effect of heat and air pollution implies a potential pathway of reducing heat-related health impacts by improving air quality.
RESUMO
Exposure to ambient particulate matter (PM) has been identified as a major global health concern; however, the importance of specific chemical PM components remains uncertain. Recent studies have suggested that carbonaceous aerosols are important detrimental components of the particle mixture. Using time-series methods, we investigated associations between short-term exposure to carbonaceous particles and mortality in London, UK. Daily counts of non-accidental, respiratory, and cardiovascular deaths were obtained between 2010 and 2019. For the same period, daily concentrations of carbonaceous particles: organic (OC), elemental (EC), wood-burning (WC), total carbon (TC) and equivalent black carbon (eBC) were sourced from two centrally located monitoring sites (one urban-traffic and one urban-background). Generalized additive models were used to estimate the percentage change in mortality risk associated with interquartile range increases in particulate concentrations. Lagged effects up to 3 days were examined. Stratified analyses were conducted by age, sex, and season, separate analyses were also performed by site-type. For non-accidental mortality, positive associations were observed for all particle species at lag1, including statistically significant percentage risk changes in WC (0.51% (95%CI: 0.19%, 0.82%) per IQR (0.68 µg/m3)) and OC (0.45% (95%CI: 0.04%, 0.87% per IQR (2.36 µg/m3)). For respiratory deaths, associations were greatest for particulate concentrations averaged over the current and previous 3 days, with increases in risk of 1.70% (95%CI: 0.64%, 2.77%) for WC and 1.31% (95%CI: -0.08%, 2.71%) for OC. No associations were found with cardiovascular mortality. Results were robust to adjustment for particle mass concentrations. Stratified analyses suggested particulate effects were greatest in the summer and respiratory associations more pronounced in females. Our findings are supportive of an association between carbonaceous particles and non-accidental and respiratory mortality. The strongest evidence of an effect was for WC; this is of significance given the rising popularity of wood-burning for residential space heating and energy production across Europe.
Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Material Particulado , Material Particulado/análise , Londres/epidemiologia , Poluentes Atmosféricos/análise , Humanos , Exposição Ambiental/estatística & dados numéricos , Feminino , Carbono/análise , Masculino , Poluição do Ar/estatística & dados numéricos , Pessoa de Meia-Idade , Mortalidade , Idoso , Adulto , Doenças Cardiovasculares/mortalidade , Monitoramento Ambiental , Estações do Ano , Adolescente , Doenças Respiratórias/mortalidade , Criança , Adulto Jovem , Pré-EscolarRESUMO
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
RESUMO
BACKGROUND: People living with asthma are disproportionately affected by air pollution, with increased symptoms, medication usage, hospital admissions, and the risk of death. To date, there has been a focus on exhaust emissions, but traffic-related air pollution (TRAP) can also arise from the mechanical abrasion of tyres, brakes, and road surfaces. We therefore created a study with the aim of investigating the acute impacts of non-exhaust emissions (NEEs) on the lung function and airway immune status of asthmatic adults. METHODS: A randomised three-condition crossover panel design will expose adults with asthma using a 2.5 h intermittent cycling protocol in a random order at three locations in London, selected to provide the greatest contrast in the NEE components within TRAP. Lung function will be monitored using oscillometry, fractional exhaled nitric oxide, and spirometry (the primary outcome is the forced expiratory volume in one second). Biomarkers of inflammation and airborne metal exposure will be measured in the upper airway using nasal lavage. Symptom responses will be monitored using questionnaires. Sources of exhaust and non-exhaust concentrations will be established using source apportionment via the positive matrix factorisation of high-time resolution chemical measures conducted at the exposure sites. DISCUSSION: Collectively, this study will provide us with valuable information on the health effects of NEE components within ambient PM2.5 and PM10, whilst establishing a biological mechanism to help contextualise current epidemiological observations.
Assuntos
Poluentes Atmosféricos , Asma , Estudos Cross-Over , Humanos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Adulto , Londres , Emissões de Veículos/análise , Masculino , Feminino , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Testes de Função RespiratóriaRESUMO
Background: Many studies reported associations between long-term exposure to environmental factors and mortality; however, little is known on the combined effects of these factors and health. We aimed to evaluate the association between external exposome and all-cause mortality in large administrative and traditional adult cohorts in Europe. Methods: Data from six administrative cohorts (Catalonia, Greece, Rome, Sweden, Switzerland and the Netherlands, totaling 27,913,545 subjects) and three traditional adult cohorts (CEANS-Sweden, EPIC-NL-the Netherlands, KORA-Germany, totaling 57,653 participants) were included. Multiple exposures were assigned at the residential addresses, and were divided into three a priori defined domains: (1) air pollution [fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and warm-season Ozone (warm-O3)]; (2) land/built environment (Normalized Difference Vegetation Index-NDVI, impervious surfaces, and distance to water); (3) air temperature (cold- and warm-season mean and standard deviation). Each domain was synthesized through Principal Component Analysis (PCA), with the aim of explaining at least 80% of its variability. Cox proportional-hazards regression models were applied and the total risk of the external exposome was estimated through the Cumulative Risk Index (CRI). The estimates were adjusted for individual- and area-level covariates. Results: More than 205 million person-years at risk and more than 3.2 million deaths were analyzed. In single-component models, IQR increases of the first principal component of the air pollution domain were associated with higher mortality [HRs ranging from 1.011 (95% CI: 1.005-1.018) for the Rome cohort to 1.076 (1.071-1.081) for the Swedish cohort]. In contrast, lower levels of the first principal component of the land/built environment domain, pointing to reduced vegetation and higher percentage of impervious surfaces, were associated with higher risks. Finally, the CRI of external exposome increased mortality for almost all cohorts. The associations found in the traditional adult cohorts were generally consistent with the results from the administrative ones, albeit without reaching statistical significance. Discussion: Various components of the external exposome, analyzed individually or in combination, were associated with increased mortality across European cohorts. This sets the stage for future research on the connections between various exposure patterns and human health, aiding in the planning of healthier cities.
RESUMO
BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.
Assuntos
Doenças Cardiovasculares , Temperatura , Humanos , Doenças Cardiovasculares/mortalidade , Mortalidade , Doenças Respiratórias/mortalidade , Estações do AnoRESUMO
BACKGROUND: An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults. METHODS: Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants' residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education. RESULTS: Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 µg/m3), PM10 (IQR: 3.35 µg/m3) and PM2.5 (IQR: 2.7 µg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants. CONCLUSIONS: The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Idoso , Humanos , Envelhecimento , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cognição , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estudos Longitudinais , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , InglaterraRESUMO
Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Masculino , Feminino , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Material Particulado/efeitos adversos , AdultoRESUMO
Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Incidência , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análiseRESUMO
Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.
RESUMO
BACKGROUND: The independent effects of short-term exposure to increased air temperature and air pollution on mortality are well-documented. There is some evidence indicating that elevated concentrations of air pollutants may lead to increased heat-related mortality, but this evidence is not consistent. Most of these effects have been documented through time-series studies using city-wide data, rather than at a finer spatial level. In our study, we examined the possible modification of the heat effects on total and cause-specific mortality by air pollution at municipality level in the Attica region, Greece, during the warm period of the years 2000 to 2016. METHODS: A municipality-specific over-dispersed Poisson regression model during the warm season (May-September) was used to investigate the heat effects on mortality and their modification by air pollution. We used the two-day average of the daily mean temperature and daily mean PM10, NO2 and 8 hour-max ozone (O3), derived from models, in each municipality as exposures. A bivariate tensor smoother was applied for temperature and each pollutant alternatively, by municipality. Α random-effects meta-analysis was used to obtain pooled estimates of the heat effects at different pollution levels. Heterogeneity of the between-levels differences of the heat effects was evaluated with a Q-test. RESULTS: A rise in mean temperature from the 75th to the 99th percentile of the municipality-specific temperature distribution resulted in an increase in total mortality of 12.4% (95% Confidence Interval (CI):7.76-17.24) on low PM10 days, and 21.25% (95% CI: 17.83-24.76) on high PM10 days. The increase on mortality was 10.09% (95% CI: - 5.62- 28.41) on low ozone days, and 14.95% (95% CI: 10.79-19.27) on high ozone days. For cause-specific mortality an increasing trend of the heat effects with increasing PM10 and ozone levels was also observed. An inconsistent pattern was observed for the modification of the heat effects by NO2, with higher heat effects estimated in the lower level of the pollutant. CONCLUSIONS: Our results support the evidence of elevated heat effects on mortality at higher levels of PM10 and 8 h max O3. Under climate change, any policy targeted at lowering air pollution levels will yield significant public health benefits.
Assuntos
Poluição do Ar , Poluentes Ambientais , Ozônio , Humanos , Grécia/epidemiologia , Temperatura Alta , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Ozônio/efeitos adversosRESUMO
Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 µg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Leucemia , Linfoma , Adulto , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , Leucemia/induzido quimicamente , Leucemia/epidemiologia , Linfoma/induzido quimicamente , Linfoma/epidemiologia , Potássio/análise , Poluentes Atmosféricos/análiseRESUMO
It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/análise , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/epidemiologia , Incidência , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análiseRESUMO
BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Programas Nacionais de Saúde , Poluição do Ar/análise , Material Particulado/análise , Europa (Continente)/epidemiologia , Estudos de Coortes , Canadá/epidemiologiaRESUMO
Background: Heat effects on respiratory mortality are known, mostly from time-series studies of city-wide data. A limited number of studies have been conducted at the national level or covering non-urban areas. Effect modification by area-level factors has not been extensively investigated. Our study assessed the heat effects on respiratory mortality at a small administrative area level in Norway, Germany, and England and Wales, in the warm period (May-September) within 1996-2018. Also, we examined possible effect modification by several area-level characteristics in the framework of the EU-Horizon2020 EXHAUSTION project. Methods: Daily respiratory mortality counts and modeled air temperature data were collected for Norway, Germany, and England and Wales at a small administrative area level. The temperature-mortality association was assessed by small area-specific Poisson regression allowing for overdispersion, using distributed lag non-linear models. Estimates were pooled at the national level and overall using a random-effect meta-analysis. Age- and sex-specific models were also applied. A multilevel random-effects model was applied to investigate the modification of the heat effects by area-level factors. Results: A rise in temperature from the 75th to 99th percentile was associated with a 27% (95% confidence interval [CI] = 19%, 34%) increase in respiratory mortality, with higher effects for females. Increased population density and PM2.5 concentrations were associated with stronger heat effects on mortality. Conclusions: Our study strengthens the evidence of adverse heat effects on respiratory mortality in Northern Europe by identifying vulnerable subgroups and subregions. This may contribute to the development of targeted policies for adaptation to climate change.