Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0301919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968191

RESUMO

INTRODUCTION: Brain positron emission tomography/computed tomography (PET/CT) scans are useful for identifying the cause of dementia by evaluating glucose metabolism in the brain with F-18-fluorodeoxyglucose or Aß deposition with F-18-florbetaben. However, since imaging time ranges from 10 to 30 minutes, movements during the examination might result in image artifacts, which interfere with diagnosis. To solve this problem, data-driven brain motion correction (DDBMC) techniques are capable of performing motion corrected reconstruction using highly accurate motion estimates with high temporal resolution. In this study, we investigated the effectiveness of DDBMC techniques on PET/CT images using a Hoffman phantom, involving continuous rotational and tilting motion, each expanded up to approximately 20 degrees. MATERIALS AND METHODS: Listmode imaging was performed using a Hoffman phantom that reproduced rotational and tilting motions of the head. Brain motion correction processing was performed on the obtained data. Reconstructed images with and without brain motion correction processing were compared. Visual evaluations by a nuclear medicine specialist and quantitative parameters of images with correction and reference still images were compared. RESULTS: Normalized Mean Squared Error (NMSE) results demonstrated the effectiveness of DDBMC in compensating for rotational and tilting motions during PET imaging. In Cases 1 and 2 involving rotational motion, NMSE decreased from 0.15-0.2 to approximately 0.01 with DDBMC, indicating a substantial reduction in differences from the reference image across various brain regions. In the Structural Similarity Index (SSIM), DDBMC improved it to above 0.96 Contrast assessment revealed notable improvements with DDBMC. In continuous rotational motion, % contrast increased from 42.4% to 73.5%, In tilting motion, % contrast increased from 52.3% to 64.5%, eliminating significant differences from the static reference image. These findings underscore the efficacy of DDBMC in enhancing image contrast and minimizing motion induced variations across different motion scenarios. CONCLUSIONS: DDBMC processing can effectively compensate for continuous rotational and tilting motion of the head during PET, with motion angles of approximately 20 degrees. However, a significant limitation of this study is the exclusive validation of the proposed method using a Hoffman phantom; its applicability to the human brain has not been investigated. Further research involving human subjects is necessary to assess the generalizability and reliability of the presented motion correction technique in real clinical scenarios.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Tomografia por Emissão de Pósitrons/métodos , Movimento (Física) , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18
2.
Acad Radiol ; 31(3): 822-829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37914626

RESUMO

RATIONALE AND OBJECTIVES: Pericardial fat (PF)-the thoracic visceral fat surrounding the heart-promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. To evaluate PF, we generated pericardial fat count images (PFCIs) from chest radiographs (CXRs) using a dedicated deep-learning model. MATERIALS AND METHODS: We reviewed data of 269 consecutive patients who underwent coronary computed tomography (CT). We excluded patients with metal implants, pleural effusion, history of thoracic surgery, or malignancy. Thus, the data of 191 patients were used. We generated PFCIs from the projection of three-dimensional CT images, wherein fat accumulation was represented by a high pixel value. Three different deep-learning models, including CycleGAN were combined in the proposed method to generate PFCIs from CXRs. A single CycleGAN-based model was used to generate PFCIs from CXRs for comparison with the proposed method. To evaluate the image quality of the generated PFCIs, structural similarity index measure (SSIM), mean squared error (MSE), and mean absolute error (MAE) of (i) the PFCI generated using the proposed method and (ii) the PFCI generated using the single model were compared. RESULTS: The mean SSIM, MSE, and MAE were 8.56 × 10-1, 1.28 × 10-2, and 3.57 × 10-2, respectively, for the proposed model, and 7.62 × 10-1, 1.98 × 10-2, and 5.04 × 10-2, respectively, for the single CycleGAN-based model. CONCLUSION: PFCIs generated from CXRs with the proposed model showed better performance than those generated with the single model. The evaluation of PF without CT may be possible using the proposed method.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Tomografia Computadorizada por Raios X
3.
Br J Radiol ; 95(1134): 20211050, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312337

RESUMO

OBJECTIVE: To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography (18F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumors (TETs). METHODS: This retrospective study included 79 TET [27 low-risk thymomas (types A, AB and B1), 31 high-risk thymomas (types B2 and B3) and 21 thymic carcinomas] patients who underwent pre-therapeutic 18F-FDG-PET/CT. High-risk TETs (high-risk thymomas and thymic carcinomas) were 52 patients. The 107 PET-based radiomic features, including SUV-related parameters [maximum SUV (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] and 1024 deep-learning features extracted from the convolutional neural network were used to predict the pathological risk subtypes of TETs using six different machine-learning algorithms. The area under the curves (AUCs) were calculated to compare the predictive performances. RESULTS: SUV-related parameters yielded the following AUCs for predicting thymic carcinomas: SUVmax 0.713, MTV 0.442, and TLG 0.479 or high-risk TETs: SUVmax 0.673, MTV 0.533, and TLG 0.539. The best-performing algorithm was the logistic regression model for predicting thymic carcinomas (AUC 0.900, accuracy 81.0%), and the random forest (RF) model for high-risk TETs (AUC 0.744, accuracy 72.2%). The AUC was significantly higher in the logistic regression model than three SUV-related parameters for predicting thymic carcinomas, and in the RF model than MTV and TLG for predicting high-risk TETs (each; p < 0.05). CONCLUSION: 18F-FDG-PET-based radiomic analysis using a machine-learning approach may be useful for predicting the pathological risk subtypes of TETs. ADVANCES IN KNOWLEDGE: Machine-learning approach using 18F-FDG-PET-based radiomic features has the potential to predict the pathological risk subtypes of TETs.


Assuntos
Aprendizado Profundo , Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Fluordesoxiglucose F18 , Humanos , Aprendizado de Máquina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Neoplasias do Timo/diagnóstico por imagem , Neoplasias do Timo/patologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA