Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 19: 6201-6211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900133

RESUMO

Farmers apply broiler chicken litter to soils to enrich organic matter and provide crops with nutrients, following varying periods of stockpiling. However, litter frequently harbors fecal-derived microbial pathogens and associated antibiotic resistance genes (ARGs), and may be a source of microbial contamination of produce. We coupled a cutting-edge Loop Genomics long-read 16S rRNA amplicon-sequencing platform with high-throughput qPCR that targeted a suite of ARGs, to assess temporal (five time points over a 60-day period) and spatial (top, middle and bottom layers) microbiome and resistome dynamics in a broiler litter stockpile. We focused on potentially pathogenic species from the Enterobacteriaceae, Enterococcaceae and Staphylococcaceae families associated with food-borne disease. Bacterial diversity was significantly lower in the middle of the stockpile, where targeted pathogens were lowest and Bacillaceae were abundant. E. coli was the most abundant Enterobacteriaceae species, and high levels of the opportunistic pathogen Enterococcus faecium were detected. Correlation analyses revealed that the latter was significantly associated with aminoglycoside (aac(6')-Ib(aka aacA4), aadA5), tetracycline (tetG), vancomycin (vanC), phenicol (floR) and MLSB (mphB) resistance genes. Staphylococcaceae were primarily non-pathogenic, but extremely low levels of the opportunistic pathogen S. aureus were detected, as was the opportunistic pathogen S. saprophyticus, which was linked to vancomycin (vanSA, vanC1), MLSB (vatE, ermB) and tetracycline (tetK) resistance genes. Collectively, we found that stockpile microbiomes and resistomes are strongly dictated by temporal fluctuations and spatial heterogeneity. Insights from this study can be exploited to improve stockpile management practice to support sustainable antimicrobial resistance mitigation policies in the future.

2.
Microbiome ; 9(1): 178, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454634

RESUMO

BACKGROUND: Therapeutic and growth-promoting antibiotics are frequently used in broiler production. Indirect evidence indicates that these practices are linked to the proliferation of antimicrobial resistance (AMR), the spread of antibiotic-resistant bacteria from food animals to humans, and the environment, but there is a lack of comprehensive experimental data supporting this. We investigated the effects of growth promotor (bacitracin) and therapeutic (enrofloxacin) antibiotic administration on AMR in broilers for the duration of a production cycle, using a holistic approach that integrated both culture-dependent and culture-independent methods. We specifically focused on pathogen-harboring families (Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae). RESULTS: Antibiotic-resistant bacteria and antibiotic resistance genes were ubiquitous in chicken cloaca and litter regardless of antibiotic administration. Environment (cloaca vs. litter) and growth stage were the primary drivers of variation in the microbiomes and resistomes, with increased bacterial diversity and a general decrease in abundance of the pathogen-harboring families with age. Bacitracin-fed groups had higher levels of bacitracin resistance genes and of vancomycin-resistant Enterococcaceae (total Enterococcaceae counts were not higher). Although metagenomic analyses classified 28-76% of the Enterococcaceae as the commensal human pathogens E. faecalis and E. faecium, culture-based analysis suggested that approximately 98% of the vancomycin-resistant Enterococcaceae were avian and not human-associated, suggesting differences in the taxonomic profiles of the resistant and non-resistant strains. Enrofloxacin treatments had varying effects, but generally facilitated increased relative abundance of multidrug-resistant Enterobacteriaceae strains, which were primarily E. coli. Metagenomic approaches revealed a diverse array of Staphylococcus spp., but the opportunistic pathogen S. aureus and methicillin resistance genes were not detected in culture-based or metagenomic analyses. Camphylobacteriaceae were significantly more abundant in the cloacal samples, especially in enrofloxacin-treated chickens, where a metagenome-assembled C. jejuni genome harboring fluoroquinolone and ß-lactam resistance genes was identified. CONCLUSIONS: Within a "farm-to-fork, one health" perspective, considering the evidence that bacitracin and enrofloxacin used in poultry production can select for resistance, we recommend their use be regulated. Furthermore, we suggest routine surveillance of ESBL E. coli, vancomycin-resistant E. faecalis and E. faecium, and fluoroquinolone-resistant C. jejuni strains considering their pathogenic nature and capacity to disseminate AMR to the environment. Video Abstract.


Assuntos
Antibacterianos/uso terapêutico , Galinhas , Farmacorresistência Bacteriana , Microbiota , Animais , Cloaca/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Estudos Longitudinais , Staphylococcus aureus
3.
J Basic Microbiol ; 57(10): 862-872, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28745822

RESUMO

The master regulator, DnrI of Streptomyces peucetius is a member of the family of transcriptional activator, Streptomyces antibiotic regulatory proteins (SARP), which controls the biosynthesis of antitumor anthracycline, daunorubicin (DNR) and doxorubicin (DXR). The binding of DnrI to the heptameric repeat sequence found within the -35 promoter region of biosynthetic gene, dpsE activates it. To combat the increased level of intracellular DNR, the cell has developed self resistance mechanism mediated by drrAB and drrC genes which are regulated by regulatory genes. We find that a drug non-producing mutant, ΔdpsA, showed sensitive phenotype in plate assay along with an increased level of dnrI transcript. Whereas the mutant grown in the presence of DNR showed a resistant phenotype with a six and eight folds increase in drrAB and drrC transcripts respectively. Computational studies followed by molecular docking showed that DnrI bound as a monomer to a slightly modified heptameric DNA motif, 5'-ACACGCA in drrA and 5'-ACAACCT in drrC which was also proved by electrophoretic mobility shift assay. These findings confirm that DnrI belongs to winged helix-turn-helix DNA-binding protein with Tetratricopeptide Repeat domain. The transcriptional regulator DnrI binds to the resistance genes at specific sites but they are activated only when an increased load of intracellular DNR is sensed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Daunorrubicina/metabolismo , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Daunorrubicina/biossíntese , Daunorrubicina/farmacologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes MDR , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Mutação , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ativação Transcricional
4.
World J Microbiol Biotechnol ; 30(1): 253-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23900905

RESUMO

Daunorubicin forms specific complex with an extracellular protease in the Streptomyces peucetius culture. The drug-protein complex co-migrates in non-denaturing PAGE as a red band. De novo peptide sequencing by nano-LC-ESI-MS/MS and MASCOT analysis identified the daunorubicin binding protein as serine protease precursor. The same protease precursor was purified sans the daunorubicin, from the mutant named ΔDPSAmut, which is deficient in daunorubicin production. Daunorubicin was added to ΔDPSAmut culture and the protease readily formed the daunorubicin-protease complex. Ability of serine protease precursor to form a selective complex with daunorubicin was confirmed by this study. Selective binding of protease to daunorubicin was seen as self-resistance determinant for the organism to survive toxic levels of the drug outside the cell. Daunorubicin-protease complex placed on S. peucetius lawn did not produce clearing zone around it, whereas daunorubicin purified from the complex did produce the clearing zone. Thereby it is concluded that the protease sequesters daunorubicin to prevent its entry into cells. Sequestration of daunorubicin by extracellular protease helps the organism to maintain a steady state sub-inhibitory level of drug around the cells. A new self-resistance determinant is reported here.


Assuntos
Daunorrubicina/metabolismo , Serina Proteases/metabolismo , Streptomyces/enzimologia , Espectrometria de Massas , Ligação Proteica , Streptomyces/metabolismo
5.
J Basic Microbiol ; 53(8): 636-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23417448

RESUMO

Streptomyces are a major group of soil bacteria that produce wide range of bioactive compounds including antibiotics. Daunorubicin is a chemotherapeutic agent for treatment of certain types of cancer, which is produced as a secondary metabolite by S. peucetius. Owing to the significance of this drug in treating cancer, understanding the molecular mechanism of its biosynthesis will assist in the genetic manipulation of this strain for better drug yields. Additionally, the knowledge can also be applied to design hybrid antibiotics that can be made in vivo by transferring genes from one Streptomyces species to another. Biosynthesis of daunorubicin in S. peucetius is accomplished by the function of 30 enzyme-coding genes in a sequential and coordinated fashion. In addition to these enzymes, three transcriptional regulators DnrO, DnrN and DnrI regulate this multi-step process by forming a coherent feed forward loop regulatory circuit, consequently controlling the entire enzyme coding genes. Since daunorubicin is a DNA intercalating drug, maintaining an optimal intracellular drug concentration is pivotal to prevent self-toxicity. Commencement of daunorubicin biosynthesis also activates the feedback mechanisms mediated by the metabolite. At exceeding intracellular concentrations, daunorubicin intercalates into DNA sequences and impedes the binding of these transcription factors. This feedback repression is relieved by a group of self-resistance genes, which concurrently efflux the excess intracellular daunorubicin. This review will discuss the mechanistic role of each transcription factor and their interplay in initiating and maintaining the biosynthesis of daunorubicin in S. peucetius.


Assuntos
Daunorrubicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reguladores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA