Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Neurol ; 15: 1360424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882690

RESUMO

Background: Intimate partner violence (IPV) perpetration is highly prevalent among veterans. Suggested risk factors of IPV perpetration include combat exposure, post-traumatic stress disorder (PTSD), depression, alcohol use, and mild traumatic brain injury (mTBI). While the underlying brain pathophysiological characteristics associated with IPV perpetration remain largely unknown, previous studies have linked aggression and violence to alterations of the limbic system. Here, we investigate whether IPV perpetration is associated with limbic microstructural abnormalities in military veterans. Further, we test the effect of potential risk factors (i.e., PTSD, depression, substance use disorder, mTBI, and war zone-related stress) on the prevalence of IPV perpetration. Methods: Structural and diffusion-weighted magnetic resonance imaging (dMRI) data were acquired from 49 male veterans of the Iraq and Afghanistan wars (Operation Enduring Freedom/Operation Iraqi Freedom; OEF/OIF) of the Translational Research Center for TBI and Stress Disorders (TRACTS) study. IPV perpetration was assessed using the psychological aggression and physical assault sub-scales of the Revised Conflict Tactics Scales (CTS2). Odds ratios were calculated to assess the likelihood of IPV perpetration in veterans with either of the following diagnoses: PTSD, depression, substance use disorder, or mTBI. Fractional anisotropy tissue (FA) measures were calculated for limbic gray matter structures (amygdala-hippocampus complex, cingulate, parahippocampal gyrus, entorhinal cortex). Partial correlations were calculated between IPV perpetration, neuropsychiatric symptoms, and FA. Results: Veterans with a diagnosis of PTSD, depression, substance use disorder, or mTBI had higher odds of perpetrating IPV. Greater war zone-related stress, and symptom severity of PTSD, depression, and mTBI were significantly associated with IPV perpetration. CTS2 (psychological aggression), a measure of IPV perpetration, was associated with higher FA in the right amygdala-hippocampus complex (r = 0.400, p = 0.005). Conclusion: Veterans with psychiatric disorders and/or mTBI exhibit higher odds of engaging in IPV perpetration. Further, the more severe the symptoms of PTSD, depression, or TBI, and the greater the war zone-related stress, the greater the frequency of IPV perpetration. Moreover, we report a significant association between psychological aggression against an intimate partner and microstructural alterations in the right amygdala-hippocampus complex. These findings suggest the possibility of a structural brain correlate underlying IPV perpetration that requires further research.

2.
Epilepsia ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837755

RESUMO

OBJECTIVE: Short-term outcomes of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) were reported for people with drug-resistant focal epilepsy (PwE). Because long-term data are still scarce, the Medtronic Registry for Epilepsy (MORE) evaluated clinical routine application of ANT-DBS. METHODS: In this multicenter registry, PwE with ANT-DBS were followed up for safety, efficacy, and battery longevity. Follow-up ended after 5 years or upon study closure. Clinical characteristics and stimulation settings were compared between PwE with no benefit, improvers, and responders, that is, PwE with average monthly seizure frequency reduction rates of ≥50%. RESULTS: Of 170 eligible PwE, 104, 62, and 49 completed the 3-, 4-, and 5-year follow-up, respectively. Most discontinuations (68%) were due to planned study closure as follow-up beyond 2 years was optional. The 5-year follow-up cohort had a median seizure frequency reduction from 16 per month at baseline to 7.9 per month at 5-year follow-up (p < .001), with most-pronounced effects on focal-to-bilateral tonic-clonic seizures (n = 15, 77% reduction, p = .008). At last follow-up (median 3.5 years), 41% (69/170) of PwE were responders. Unifocal epilepsy (p = .035) and a negative history of epilepsy surgery (p = .002) were associated with larger average monthly seizure frequency reductions. Stimulation settings did not differ between response groups. In 179 implanted PwE, DBS-related adverse events (AEs, n = 225) and serious AEs (n = 75) included deterioration in epilepsy or seizure frequency/severity/type (33; 14 serious), memory/cognitive impairment (29; 3 serious), and depression (13; 4 serious). Five deaths occurred (none were ANT-DBS related). Most AEs (76.3%) manifested within the first 2 years after implantation. Activa PC depletion (n = 37) occurred on average after 45 months. SIGNIFICANCE: MORE provides further evidence for the long-term application of ANT-DBS in clinical routine practice. Although clinical benefits increased over time, side effects occurred mainly during the first 2 years. Identified outcome modifiers can help inform PwE selection and management.

3.
J Affect Disord ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897303

RESUMO

BACKGROUND: Military veterans with posttraumatic stress disorder (PTSD) commonly experience posttraumatic guilt. Guilt over commission or omission evolves when responsibility is assumed for an unfortunate outcome (e.g., the death of a fellow combatant). Survivor guilt is a state of intense emotional distress experienced by the weight of knowing that one survived while others did not. METHODS: This study of the Translational Research Center for TBI and Stress Disorders (TRACTS) analyzed structural and diffusion-weighted magnetic resonance imaging data from 132 male Iraq/Afghanistan veterans with PTSD. The Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV) was employed to classify guilt. Thirty (22.7 %) veterans experienced guilt over acts of commission or omission, 34 (25.8 %) experienced survivor guilt, and 68 (51.5 %) had no posttraumatic guilt. White matter microstructure (fractional anisotropy, FA), cortical thickness, and cortical volume were compared between veterans with guilt over acts of commission or omission, veterans with survivor guilt, and veterans without guilt. RESULTS: Veterans with survivor guilt had significantly lower white matter FA compared to veterans who did not experience guilt (p < .001), affecting several regions of major white matter fiber bundles. There were no significant differences in white matter FA, cortical thickness, or volumes between veterans with guilt over acts of commission or omission and veterans without guilt (p > .050). LIMITATIONS: This cross-sectional study with exclusively male veterans precludes inferences of causality between the studied variables and generalizability to the larger veteran population that includes women. CONCLUSION: Survivor guilt may be a particularly impactful form of posttraumatic guilt that requires specific treatment efforts targeting brain health.

4.
Nat Commun ; 15(1): 5249, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898100

RESUMO

Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.


Assuntos
Eletroencefalografia , Consolidação da Memória , Humanos , Masculino , Feminino , Adulto , Consolidação da Memória/fisiologia , Epilepsia/fisiopatologia , Fases do Sono/fisiologia , Adulto Jovem , Memória/fisiologia , Lobo Temporal/fisiologia , Sono/fisiologia , Sono de Ondas Lentas/fisiologia
5.
Nat Hum Behav ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710766

RESUMO

Information about heading direction is critical for navigation as it provides the means to orient ourselves in space. However, given that veridical head-direction signals require physical rotation of the head and most human neuroimaging experiments depend upon fixing the head in position, little is known about how the human brain is tuned to such heading signals. Here we adress this by asking 52 healthy participants undergoing simultaneous electroencephalography and motion tracking recordings (split into two experiments) and 10 patients undergoing simultaneous intracranial electroencephalography and motion tracking recordings to complete a series of orientation tasks in which they made physical head rotations to target positions. We then used a series of forward encoding models and linear mixed-effects models to isolate electrophysiological activity that was specifically tuned to heading direction. We identified a robust posterior central signature that predicts changes in veridical head orientation after regressing out confounds including sensory input and muscular activity. Both source localization and intracranial analysis implicated the medial temporal lobe as the origin of this effect. Subsequent analyses disentangled head-direction signatures from signals relating to head rotation and those reflecting location-specific effects. Lastly, when directly comparing head direction and eye-gaze-related tuning, we found that the brain maintains both codes while actively navigating, with stronger tuning to head direction in the medial temporal lobe. Together, these results reveal a taxonomy of population-level head-direction signals within the human brain that is reminiscent of those reported in the single units of rodents.

6.
Neurology ; 102(4): e208007, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290094

RESUMO

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Estudos de Coortes , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Convulsões , Resultado do Tratamento
7.
Epilepsia Open ; 9(1): 236-249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37920967

RESUMO

OBJECTIVE: Thinning of the peripapillary retinal nerve fiber layer (p-RNFL), as measured by optical coherence tomography (OCT), was recently introduced as a promising marker for cerebral neuronal loss in people with epilepsy (PwE). However, its clinical implication remains to be elucidated. We thus aimed to (1) systematically characterize the extent of the retinal neuroaxonal loss in a broad spectrum of unselected PwE and (2) to evaluate the main clinical determinants. METHODS: In this prospective study, a spectral-domain OCT evaluation was performed on 98 well-characterized PwE and 85 healthy controls (HCs) (18-55 years of age). All inner retinal layers and the total macula volume were assessed. Group comparisons and linear regression analyses with stepwise backward selection were performed to identify relevant clinical and demographic modulators of the retinal neuroaxonal integrity. RESULTS: PwE (age: 33.7 ± 10.6 years; 58.2% female) revealed a significant neuroaxonal loss across all assessed retinal layers (global pRNFL, P = 0.001, Δ = 4.24 µm; macular RNFL, P < 0.001, Δ = 0.05 mm3 ; ganglion cell inner plexiform layer, P < 0.001, Δ = 0.11 mm3 ; inner nuclear layer, INL, P = 0.03, Δ = 0.02 mm3 ) as well as significantly reduced total macula volumes (TMV, P < 0.001, Δ = 0.18 mm3 ) compared to HCs (age: 31.2 ± 9.0 years; 57.6% female). The extent of retinal neuroaxonal loss was associated with the occurrence and frequency of tonic-clonic seizures and the number of antiseizure medications, and was most pronounced in male patients. SIGNIFICANCE: PwE presented an extensive retinal neuroaxonal loss, affecting not only the peripapillary but also macular structures. The noninvasive and economic measurement via OCT bears the potential to establish as a practical tool to inform patient management, as the extent of the retinal neuroaxonal loss reflects aspects of disease severity and sex-specific vulnerability. PLAIN LANGUAGE SUMMARY: The retina is an extension of the brain and closely connected to it. Thus, cerebral alterations like atrophy reflect also on the retinal level. This is advantageous, as the retina is easily accessible and measureable with help of the optical coherence tomography. Here we report that adults with epilepsy have a significantly thinner retina than healthy persons. Especially people with many big seizures and a lot of medications have a thinner retina. We propose that measurement of the retina can be useful as a marker of disease severity and to inform patient management.


Assuntos
Epilepsia , Células Ganglionares da Retina , Adulto , Humanos , Masculino , Feminino , Adulto Jovem , Tomografia de Coerência Óptica/métodos , Estudos Transversais , Estudos Prospectivos , Retina/diagnóstico por imagem , Epilepsia/diagnóstico por imagem
8.
J Clin Med ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629457

RESUMO

The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM microstructure is associated with long-term outcomes following mTBI. The diffusion and structural MRI data of 278 participants between 18 and 65 years of age with and without military background from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness (FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the comparison cohort (n = 131). Associations between imaging features and post-concussive symptom severity, and functional and cognitive impairment were investigated using partial correlations while controlling for mental health comorbidities that are particularly common among military cohorts and were present in both the mTBI and comparison group. Findings revealed significantly lower whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impairment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no significant difference was observed in cortical thickness, nor between cortical thickness and outcome (p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary may be sensitive markers of adverse long-term outcomes following mTBI.

9.
JAMA Neurol ; 80(6): 588-596, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010826

RESUMO

Importance: For the large population of people with drug-refractory epilepsy, alternative treatment approaches are needed. Clinical trial outcomes of a novel stimulation device, which is newly available in Europe for the treatment of patients with a predominant seizure focus, are reported for the first time. Objective: To perform a pooled analysis of the results of 2 prospective, multicenter, single-arm trials, A Pilot Study to Assess the Feasibility of Neurostimulation With the EASEE System to Treat Medically Refractory Focal Epilepsy (EASEE II) and A Pilot Study to Assess the Feasibility of Patient-Controlled Neurostimulation With the EASEE System to Treat Medically Refractory Focal Epilepsy (PIMIDES I), assessing the safety and efficacy of epicranial focal cortex stimulation (FCS) with a novel implantable device (EASEE [Precisis]) as adjunctive treatment for adult patients with drug-refractory focal epilepsy. Design, Setting, and Participants: This study was a pooled analysis of 2 nonrandomized uncontrolled trials, EASEE II and PIMIDES I, which began on January 15, 2019, and January 14, 2020, respectively, and ended on July 28, 2021. EASEE II and PIMIDES I were the first in-human, prospective, single-arm trials with an 8-month evaluation period. Patients were recruited at 7 European epilepsy centers. Consecutive participants with drug-refractory focal epilepsy were enrolled. Study data were analyzed from September 29, 2021, to February 2, 2022. Interventions: After a 1-month prospective baseline period, patients were implanted with the neurostimulation device. After a 1-month postimplantation recovery period, unblinded FCS was activated using both high-frequency and direct current (DC)-like components performed via electrode arrays placed epicranially above the individual epileptic focus region. Main Outcomes and Measures: Efficacy was prospectively assessed by the responder rate in the sixth month of stimulation compared with baseline; safety and additional end points were assessed after device implantation and during the stimulation period. Results: Of the 34 adult patients enrolled at 6 German and 1 Belgian investigational site, 33 (mean [SD] age, 34.6 [13.5] years; 18 male patients [54.5%]) received the neurostimulation device implant. A total of 32 patients underwent combined high-frequency direct current-like stimulation at least until the 8-month postimplant follow-up visit. After 6 months of stimulation, 17 of 32 patients (53.1%) were responders to treatment with at least a 50% reduction in seizure frequency compared with baseline, corresponding to a significant median seizure reduction by 52% (95% CI, 0.37%-0.76%; P < .001). No device- or procedure-related serious adverse events were reported (0; 95% CI, 0%-10.58%). There were no significant alterations in cognition, mood, or overall quality of life. Conclusions and Relevance: Results of this pooled analysis of 2 nonrandomized uncontrolled trials suggest that FCS with a novel neurostimulation device was associated with an effective reduction in seizure frequency in patients with drug-refractory focal epilepsy and may offer a promising treatment option for patients with a predominant epileptic focus. Trial Registration: German Clinical Trials Register: DRKS00015918 and DRKS00017833, respectively, and jointly under PROSPERO: CRD42021266440.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Adulto , Humanos , Masculino , Qualidade de Vida , Estudos Prospectivos , Projetos Piloto , Epilepsia/tratamento farmacológico , Epilepsias Parciais/terapia , Convulsões/tratamento farmacológico , Epilepsia Resistente a Medicamentos/terapia , Anticonvulsivantes/uso terapêutico , Resultado do Tratamento
10.
J Clin Med ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902865

RESUMO

Sleep disturbances are strongly associated with mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). PTSD and mTBI have been linked to alterations in white matter (WM) microstructure, but whether poor sleep quality has a compounding effect on WM remains largely unknown. We evaluated sleep and diffusion magnetic resonance imaging (dMRI) data from 180 male post-9/11 veterans diagnosed with (1) PTSD (n = 38), (2) mTBI (n = 25), (3) comorbid PTSD+mTBI (n = 94), and (4) a control group with neither PTSD nor mTBI (n = 23). We compared sleep quality (Pittsburgh Sleep Quality Index, PSQI) between groups using ANCOVAs and calculated regression and mediation models to assess associations between PTSD, mTBI, sleep quality, and WM. Veterans with PTSD and comorbid PTSD+mTBI reported poorer sleep quality than those with mTBI or no history of PTSD or mTBI (p = 0.012 to <0.001). Poor sleep quality was associated with abnormal WM microstructure in veterans with comorbid PTSD+mTBI (p < 0.001). Most importantly, poor sleep quality fully mediated the association between greater PTSD symptom severity and impaired WM microstructure (p < 0.001). Our findings highlight the significant impact of sleep disturbances on brain health in veterans with PTSD+mTBI, calling for sleep-targeted interventions.

11.
Neurology ; 100(18): e1852-e1865, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36927882

RESUMO

BACKGROUND AND OBJECTIVES: The efficacy of deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) in patients with drug-resistant epilepsy (DRE) was demonstrated in the double-blind Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy randomized controlled trial. The Medtronic Registry for Epilepsy (MORE) aims to understand the safety and longer-term effectiveness of ANT DBS therapy in routine clinical practice. METHODS: MORE is an observational registry collecting prospective and retrospective clinical data. Participants were at least 18 years old, with focal DRE recruited across 25 centers from 13 countries. They were followed for at least 2 years in terms of seizure frequency (SF), responder rate (RR), health-related quality of life (Quality of Life in Epilepsy Inventory 31), depression, and safety outcomes. RESULTS: Of the 191 patients recruited, 170 (mean [SD] age of 35.6 [10.7] years, 43% female) were implanted with DBS therapy and met all eligibility criteria. At baseline, 38% of patients reported cognitive impairment. The median monthly SF decreased by 33.1% from 15.8 at baseline to 8.8 at 2 years (p < 0.0001) with 32.3% RR. In the subgroup of 47 patients who completed 5 years of follow-up, the median monthly SF decreased by 55.1% from 16 at baseline to 7.9 at 5 years (p < 0.0001) with 53.2% RR. High-volume centers (>10 implantations) had 42.8% reduction in median monthly SF by 2 years in comparison with 25.8% in low-volume center. In patients with cognitive impairment, the reduction in median monthly SF was 26.0% by 2 years compared with 36.1% in patients without cognitive impairment. The most frequently reported adverse events were changes (e.g., increased frequency/severity) in seizure (16%), memory impairment (patient-reported complaint, 15%), depressive mood (patient-reported complaint, 13%), and epilepsy (12%). One definite sudden unexpected death in epilepsy case was reported. DISCUSSION: The MORE registry supports the effectiveness and safety of ANT DBS therapy in a real-world setting in the 2 years following implantation. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ANT DBS reduces the frequency of seizures in patients with drug-resistant focal epilepsy. TRIAL REGISTRATION INFORMATION: MORE ClinicalTrials.gov Identifier: NCT01521754, first posted on January 31, 2012.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Feminino , Criança , Adolescente , Masculino , Estimulação Encefálica Profunda/efeitos adversos , Qualidade de Vida , Estudos Retrospectivos , Estudos Prospectivos , Tálamo , Epilepsia/etiologia , Epilepsia Resistente a Medicamentos/terapia , Convulsões/etiologia , Sistema de Registros
12.
J Neurol Sci ; 445: 120516, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702068

RESUMO

INTRODUCTION: Neurological soft signs (NSS) are minor deviations from the norm in motor performance that are commonly assessed using neurological examinations. NSS may be of clinical relevance for evaluating the developmental status of adolescents. Here we investigate whether quantitative force plate measures may add relevant information to observer-based neurological examinations. METHODS: Male adolescent athletes (n = 141) aged 13-16 years from three European sites underwent a neurological examination including 28 tests grouped into six functional clusters. The performance of tests and functional clusters was rated as optimal/non-optimal resulting in NSS+/NSS- groups and a continuous total NSS score. Participants performed a postural control task on a Balance Tracking System measured as path length, root mean square and sway area. ANCOVAs were applied to test for group differences in postural control between the NSS+ and NSS- group, and between optimal/non-optimal performance on a cluster- and test-level. Moreover, we tested for correlations between the total NSS score and postural control variables. RESULTS: There was no significant overall difference between the NSS+ and NSS- group in postural control. However, non-optimal performing participants in the diadochokinesis test swayed significantly more in the medial-lateral direction than optimal performing participants. Moreover, a lower total NSS score was associated with reduced postural control in the medial-lateral direction. CONCLUSION: Our findings demonstrate that NSS are related to postural control in adolescent athletes. Thus, force plate measures may add a quantitative, objective measurement of postural control to observer-based qualitative assessments, and thus, may complement clinical testing.


Assuntos
Atletas , Equilíbrio Postural , Humanos , Masculino , Adolescente , Exame Neurológico
13.
J Neurotrauma ; 40(7-8): 649-664, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36324218

RESUMO

Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared pathophysiology. The present work investigates the associations among white matter microstructure, psychological functioning, and serum neuroactive steroids that are part of the stress-response system. Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation) and free-water-corrected fractional anisotropy (FAT) was extracted. Associations between serum neurosteroid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-brain white matter microstructure were assessed using regression models. Moderation models tested the effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is associated with whole-brain white matter FAT (ß = 0.24, t = 3.05, p = 0.006). This association is significantly modulated by PTSD+mTBI comorbidity (ß = 0.00, t = 2.50, p = 0.027), although an mTBI diagnosis alone did not significantly impact this association (p = 0.088). There was no significant association between PREGNE and FAT (p = 0.380). Importantly, lower FAT is associated with poor psychological functioning (ß = -0.19, t = -2.35, p = 0.020). This study provides novel insight into a potential common pathophysiological mechanism of neurosteroid dysregulation underlying the high risk for mental health issues in military service members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain's stress response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a promising tool for restoring brain health and improving psychological functioning.


Assuntos
Concussão Encefálica , Militares , Neuroesteroides , Transtornos de Estresse Pós-Traumáticos , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Encéfalo , Concussão Encefálica/complicações , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/complicações
14.
Cereb Cortex ; 33(9): 5547-5556, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36424865

RESUMO

Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physically trained adolescents. Male adolescent athletes (n = 136, 13-16 years) underwent a standardized neurological examination including 28 tests grouped into 6 functional clusters. Non-optimal performance in at least 1 cluster was rated as NSS (NSS+ group). Participants underwent T1- and diffusion-weighted magnetic resonance imaging. Cortical volume, thickness, and local gyrification were calculated using Freesurfer. Measures of white matter microstructure (Free-water (FW), FW-corrected fractional anisotropy (FAt), axial and radial diffusivity (ADt, RDt)) were calculated using tract-based spatial statistics. General linear models with age and handedness as covariates were applied to assess differences between NSS+ and NSS- group. We found higher gyrification in a large cluster spanning the left superior frontal and parietal areas, and widespread lower FAt and higher RDt compared with the NSS- group. This study shows that NSS in adolescents are associated with brain structure alterations. Underlying mechanisms may include alterations in synaptic pruning and axon myelination, which are hallmark processes of brain maturation.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética , Exame Neurológico
16.
JAMA Netw Open ; 5(9): e2231891, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36112375

RESUMO

Importance: Military service members returning from theaters of war are at increased risk for mental illness, but despite high prevalence and substantial individual and societal burden, the underlying pathomechanisms remain largely unknown. Exposure to high levels of emotional stress in theaters of war and mild traumatic brain injury (mTBI) are presumed factors associated with risk for the development of mental disorders. Objective: To investigate (1) whether war zone-related stress is associated with microstructural alterations in limbic gray matter (GM) independent of mental disorders common in this population, (2) whether associations between war zone-related stress and limbic GM microstructure are modulated by a history of mTBI, and (3) whether alterations in limbic GM microstructure are associated with neuropsychological functioning. Design, Setting, and Participants: This cohort study was part of the TRACTS (Translational Research Center for TBI and Stress Disorders) study, which took place in 2010 to 2014 at the Veterans Affair Rehabilitation Research and Development TBI National Network Research Center. Participants included male veterans (aged 18-65 years) with available diffusion tensor imaging data enrolled in the TRACTS study. Data analysis was performed between December 2017 to September 2021. Exposures: The Deployment Risk and Resilience Inventory (DRRI) was used to measure exposure to war zone-related stress. The Boston Assessment of TBI-Lifetime was used to assess history of mTBI. Stroop Inhibition (Stroop-IN) and Inhibition/Switching (Stroop-IS) Total Error Scaled Scores were used to assess executive or attentional control functions. Main Outcomes and Measures: Diffusion characteristics (fractional anisotropy of tissue [FAT]) of 16 limbic and paralimbic GM regions and measures of functional outcome. Results: Among 384 male veterans recruited, 168 (mean [SD] age, 31.4 [7.4] years) were analyzed. Greater war zone-related stress was associated with lower FAT in the cingulate (DRRI-combat left: P = .002, partial r = -0.289; DRRI-combat right: P = .02, partial r = -0.216; DRRI-aftermath left: P = .004, partial r = -0.281; DRRI-aftermath right: P = .02, partial r = -0.219), orbitofrontal (DRRI-combat left medial orbitofrontal cortex: P = .02, partial r = -0.222; DRRI-combat right medial orbitofrontal cortex: P = .005, partial r = -0.256; DRRI-aftermath left medial orbitofrontal cortex: P = .02, partial r = -0.214; DRRI-aftermath right medial orbitofrontal cortex: P = .005, partial r = -0.260; DRRI-aftermath right lateral orbitofrontal cortex: P = .03, partial r = -0.196), and parahippocampal (DRRI-aftermath right: P = .03, partial r = -0.191) gyrus, as well as with higher FAT in the amygdala-hippocampus complex (DRRI-combat: P = .005, partial r = 0.254; DRRI-aftermath: P = .02, partial r = 0.223). Lower FAT in the cingulate-orbitofrontal gyri was associated with impaired response inhibition (Stroop-IS left cingulate: P < .001, partial r = -0.440; Stroop-IS right cingulate: P < .001, partial r = -0.372; Stroop-IS left medial orbitofrontal cortex: P < .001, partial r = -0.304; Stroop-IS right medial orbitofrontal cortex: P < .001, partial r = -0.340; Stroop-IN left cingulate: P < .001, partial r = -0.421; Stroop-IN right cingulate: P < .001, partial r = -0.300; Stroop-IN left medial orbitofrontal cortex: P = .01, partial r = -0.223; Stroop-IN right medial orbitofrontal cortex: P < .001, partial r = -0.343), whereas higher FAT in the mesial temporal regions was associated with improved short-term memory and processing speed (left amygdala-hippocampus complex: P < .001, partial r = -0.574; right amygdala-hippocampus complex: P < .001, partial r = 0.645; short-term memory left amygdala-hippocampus complex: P < .001, partial r = 0.570; short-term memory right amygdala-hippocampus complex: P < .001, partial r = 0.633). A history of mTBI did not modulate the association between war zone-related stress and GM diffusion. Conclusions and Relevance: This study revealed an association between war zone-related stress and alteration of limbic GM microstructure, which was associated with cognitive functioning. These results suggest that altered limbic GM microstructure may underlie the deleterious outcomes of war zone-related stress on brain health. Military service members may benefit from early therapeutic interventions after deployment to a war zone.


Assuntos
Imagem de Tensor de Difusão , Substância Cinzenta , Adulto , Encéfalo , Córtex Cerebral , Estudos de Coortes , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino
17.
Nat Commun ; 13(1): 5231, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064855

RESUMO

A hallmark of non-rapid eye movement sleep is the coordinated interplay of slow oscillations (SOs) and sleep spindles. Traditionally, a cortico-thalamo-cortical loop is suggested to coordinate these rhythms: neocortically-generated SOs trigger spindles in the thalamus that are projected back to neocortex. Here, we used intrathalamic recordings from human epilepsy patients to test this canonical interplay. We show that SOs in the anterior thalamus precede neocortical SOs (peak -50 ms), whereas concurrently-recorded SOs in the mediodorsal thalamus are led by neocortical SOs (peak +50 ms). Sleep spindles, detected in both thalamic nuclei, preceded their neocortical counterparts (peak -100 ms) and were initiated during early phases of thalamic SOs. Our findings indicate an active role of the anterior thalamus in organizing sleep rhythms in the neocortex and highlight the functional diversity of thalamic nuclei in humans. The thalamic coordination of sleep oscillations could have broad implications for the mechanisms underlying memory consolidation.


Assuntos
Neocórtex , Sono de Ondas Lentas , Eletroencefalografia , Humanos , Sono , Tálamo
18.
BMJ Case Rep ; 15(3)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351750

RESUMO

We describe a man in his 30s who presented with paroxysmal right-sided dyskinesias of the arm and neck, misdiagnosed with drug-resistant focal epilepsy. Two months earlier he had undergone surgery for chronic sinusitis. Immediately after this procedure, he developed hemiparesis, hemiataxia, paresthesias and disturbances in verbal fluency. Cranial MRI revealed a disruption of the left lamina cribrosa and an intracerebral injury resembling a branch canal spanning to the left dorsal third of the thalamus. Single-photon emission tomography imaging demonstrated malperfusion of the left ventral thalamus, left-sided cortex and right cerebellar hemisphere. During continuous video-EEG monitoring, three dyskinetic episodes with tremor of the right arm and dystonia of the finger and shoulder could be recorded. The paroxysmal dyskinesias did not improve with carbamazepine, valproate and tiapride. This case demonstrates an unusual symptomatic cause of a thalamic movement disorder misdiagnosed as focal epilepsy and highlights the postoperative complications, diagnostic and treatment efforts.


Assuntos
Coreia , Discinesias , Epilepsias Parciais , Carbamazepina/uso terapêutico , Coreia/diagnóstico , Erros de Diagnóstico , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Humanos , Masculino
19.
Brain Topogr ; 34(5): 698-707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34401999

RESUMO

To study the neuroanatomical correlate of involuntary unilateral blinking in humans, using the example of patients with focal epilepsy. Patients with drug resistant focal epilepsy undergoing presurgical evaluation with stereotactically implanted EEG-electrodes (sEEG) were recruited from the local epilepsy monitoring unit. Only patients showing ictal unilateral blinking or unilateral blinking elicited by direct electrical stimulation were included (n = 16). MRI and CT data were used for visualization of the electrode positions. In two patients, probabilistic tractography with seeding from the respective electrodes was additionally performed. Three main findings were made: (1) involuntary unilateral blinking was associated with activation of the anterior temporal region, (2) tractography showed widespread projections to the ipsilateral frontal, pericentral, occipital, limbic and cerebellar regions and (3) blinking was observed predominantly in female patients with temporal lobe epilepsies. Unilateral blinking was found to be associated with an ipsilateral activation of the anterior temporal region. We suggest that the identified network is not part of the primary blinking control but might have modulating influence on ipsilateral blinking by integrating contextual information.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia do Lobo Temporal , Piscadela , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Humanos
20.
J Magn Reson Imaging ; 54(6): 1819-1829, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137112

RESUMO

BACKGROUND: Exposure to repetitive head impacts (RHI) is associated with an increased risk of later-life neurobehavioral dysregulation and neurodegenerative disease. The underlying pathomechanisms are largely unknown. PURPOSE: To investigate whether RHI exposure is associated with later-life corpus callosum (CC) microstructure and whether CC microstructure is associated with plasma total tau and neuropsychological/neuropsychiatric functioning. STUDY TYPE: Retrospective cohort study. POPULATION: Seventy-five former professional American football players (age 55.2 ± 8.0 years) with cognitive, behavioral, and mood symptoms. FIELD STRENGTH/SEQUENCE: Diffusion-weighted echo-planar MRI at 3 T. ASSESSMENT: Subjects underwent diffusion MRI, venous puncture, neuropsychological testing, and completed self-report measures of neurobehavioral dysregulation. RHI exposure was assessed using the Cumulative Head Impact Index (CHII). Diffusion MRI measures of CC microstructure (i.e., free-water corrected fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD)) were extracted from seven segments of the CC (CC1-7), using a tractography clustering algorithm. Neuropsychological tests were selected: Trail Making Test Part A (TMT-A) and Part B (TMT-B), Controlled Oral Word Association Test (COWAT), Stroop Interference Test, and the Behavioral Regulation Index (BRI) from the Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A). STATISTICAL TESTS: Diffusion MRI metrics were tested for associations with RHI exposure, plasma total tau, neuropsychological performance, and neurobehavioral dysregulation using generalized linear models for repeated measures. RESULTS: RHI exposure was associated with increased AD of CC1 (correlation coefficient (r) = 0.32, P < 0.05) and with increased plasma total tau (r = 0.34, P < 0.05). AD of the anterior CC1 was associated with increased plasma total tau (CC1: r = 0.30, P < 0.05; CC2: r = 0.29, P < 0.05). Higher trace, AD, and RD of CC1 were associated with better performance (P < 0.05) in TMT-A (trace, r = 0.33; AD, r = 0.31; and RD, r = 0.28) and TMT-B (trace, r = 0.31; RD, r = 0.34). Higher FA and AD of CC2 were associated with better performance (P < 0.05) in TMT-A (FA, r = 0.36; AD, r = 0.28), TMT-B (FA, r = 0.36; AD, r = 0.27), COWAT (FA, r = 0.36; AD, r = 0.32), and BRI (AD, r = 0.29). DATA CONCLUSION: These results suggest an association among RHI exposure, CC microstructure, plasma total tau, and clinical functioning in former professional American football players. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1.


Assuntos
Futebol Americano , Doenças Neurodegenerativas , Substância Branca , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA