Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Front Plant Sci ; 15: 1390144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685963

RESUMO

When exposed to low temperatures, plants undergo a drastic reprogramming of their transcriptome in order to adapt to their new environmental conditions, which primes them for potential freezing temperatures. While the involvement of transcription factors in this process, termed cold acclimation, has been deeply investigated, the potential contribution of chromatin regulation remains largely unclear. A large proportion of cold-inducible genes carries the repressive mark histone 3 lysine 27 trimethylation (H3K27me3), which has been hypothesized as maintaining them in a silenced state in the absence of stress, but which would need to be removed or counteracted upon stress perception. However, the fate of H3K27me3 during cold exposure has not been studied genome-wide. In this study, we offer an epigenome profiling of H3K27me3 and its antagonistic active mark H3K4me3 during short-term cold exposure. Both chromatin marks undergo rapid redistribution upon cold exposure, however, the gene sets undergoing H3K4me3 or H3K27me3 differential methylation are distinct, refuting the simplistic idea that gene activation relies on a switch from an H3K27me3 repressed chromatin to an active form enriched in H3K4me3. Coupling the ChIP-seq experiments with transcriptome profiling reveals that differential histone methylation only weakly correlates with changes in expression. Interestingly, only a subset of cold-regulated genes lose H3K27me3 during their induction, indicating that H3K27me3 is not an obstacle to transcriptional activation. In the H3K27me3 methyltransferase curly leaf (clf) mutant, many cold regulated genes display reduced H3K27me3 levels but their transcriptional activity is not altered prior or during a cold exposure, suggesting that H3K27me3 may serve a more intricate role in the cold response than simply repressing the cold-inducible genes in naïve conditions.

2.
Plant Commun ; 5(5): 100879, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38486454

RESUMO

Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.


Assuntos
Redes Reguladoras de Genes , Variação Genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas , Fenótipo
3.
BMC Plant Biol ; 24(1): 87, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311744

RESUMO

BACKGROUND: GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS: By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS: Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Aclimatação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Variação Genética , Luz , Fotossíntese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell ; 36(4): 812-828, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38231860

RESUMO

Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.


Assuntos
Perfilação da Expressão Gênica , Plantas , Reprodutibilidade dos Testes , Plantas/genética , Estresse Fisiológico/genética , Armazenamento e Recuperação da Informação
5.
Plant J ; 118(1): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128030

RESUMO

The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Methods Mol Biol ; 2698: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682465

RESUMO

A major question in plant biology is to understand how plant growth, development, and environmental responses are controlled and coordinated by the activities of regulatory factors. Gene regulatory network (GRN) analyses require integrated approaches that combine experimental approaches with computational analyses. A wide range of experimental approaches and tools are now available, such as targeted perturbation of gene activities, quantitative and cell-type specific measurements of dynamic gene activities, and systematic analysis of the molecular 'hard-wiring' of the systems. At the computational level, different tools and databases are available to study regulatory sequences, including intuitive visualizations to explore data-driven gene regulatory networks in different plant species. Furthermore, advanced data integration approaches have recently been developed to efficiently leverage complementary regulatory data types and learn context-specific networks.


Assuntos
Redes Reguladoras de Genes , Aprendizagem , Bases de Dados Factuais , Desenvolvimento Vegetal , Análise de Sistemas
7.
Methods Mol Biol ; 2698: 147-161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682474

RESUMO

Here we provide an updated protocol for the Systematic Evolution of Ligands followed by massively parallel sequencing (SELEX-seq) method to study protein-DNA interaction specificities. This in vitro method is used to characterize DNA-binding specificities of transcription factors (TFs). The procedure is based on cycles of immunoprecipitation of protein-DNA complexes, starting with a randomized DNA library of defined fragment length, followed by massively parallel sequencing. The updated protocol includes aspects of experimental design and procedure as well as basic instructions on data analysis.


Assuntos
Análise de Dados , Fatores de Transcrição , Fatores de Transcrição/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação
8.
Cancer Discov ; 13(8): 1922-1947, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37191437

RESUMO

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.


Assuntos
Leucemia Mieloide Aguda , Receptores de Citocinas , Humanos , Receptores de Citocinas/uso terapêutico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação , Transdução de Sinais , Proliferação de Células , Células-Tronco Neoplásicas
9.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034724

RESUMO

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.

10.
Genome Biol ; 24(1): 65, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016448

RESUMO

BACKGROUND: Homoeologs are defined as homologous genes resulting from allopolyploidy. Bread wheat, Triticum aestivum, is an allohexaploid species with many homoeologs. Homoeolog expression bias, referring to the relative contribution of homoeologs to the transcriptome, is critical for determining the traits that influence wheat growth and development. Asymmetric transcription of homoeologs has been so far investigated in a tissue or organ-specific manner, which could be misleading due to a mixture of cell types. RESULTS: Here, we perform single nuclei RNA sequencing and ATAC sequencing of wheat root to study the asymmetric gene transcription, reconstruct cell differentiation trajectories and cell-type-specific gene regulatory networks. We identify 22 cell types. We then reconstruct cell differentiation trajectories that suggest different origins between epidermis/cortex and endodermis, distinguishing bread wheat from Arabidopsis. We show that the ratio of asymmetrically transcribed triads varies greatly when analyzing at the single-cell level. Hub transcription factors determining cell type identity are also identified. In particular, we demonstrate that TaSPL14 participates in vasculature development by regulating the expression of BAM1. Combining single-cell transcription and chromatin accessibility data, we construct the pseudo-time regulatory network driving root hair differentiation. We find MYB3R4, REF6, HDG1, and GATAs as key regulators in this process. CONCLUSIONS: Our findings reveal the transcriptional landscape of root organization and asymmetric gene transcription at single-cell resolution in polyploid wheat.


Assuntos
Pão , Triticum , Triticum/genética , Multiômica , Transcriptoma , Poliploidia , Regulação da Expressão Gênica de Plantas
11.
Nat Plants ; 9(3): 473-485, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797351

RESUMO

How transcription factors attain their target gene specificity and how this specificity may be modulated, acquiring different regulatory functions through the development of plant tissues, is an open question. Here we characterized different regulatory roles of the MADS-domain transcription factor FRUITFULL (FUL) in flower development and mechanisms modulating its activity. We found that the dual role of FUL in regulating floral transition and pistil development is associated with its different in vivo patterns of DNA binding in both tissues. Characterization of FUL protein complexes by liquid chromatography-tandem mass spectrometry and SELEX-seq experiments shows that aspects of tissue-specific target site selection can be predicted by tissue-specific variation in the composition of FUL protein complexes with different DNA binding specificities, without considering the chromatin status of the target region. This suggests a role for dynamic changes in FUL TF complex composition in reshaping the regulatory functions of FUL during flower development.


Assuntos
Proteínas de Domínio MADS , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Annu Rev Plant Biol ; 74: 111-137, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36608347

RESUMO

cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Sequências Reguladoras de Ácido Nucleico/genética , Genômica , Genoma , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Evolução Molecular , Mamíferos/genética
13.
Plant Commun ; 4(1): 100511, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36575799

RESUMO

Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Antocianinas , Proteômica , Heme/metabolismo , Proteínas de Ligação a DNA/genética
14.
Leukemia ; 36(11): 2690-2704, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131042

RESUMO

Many cancers are organized as cellular hierarchies sustained by cancer stem cells (CSC), whose eradication is crucial for achieving long-term remission. Difficulties to isolate and undertake in vitro and in vivo experimental studies of rare CSC under conditions that preserve their original properties currently constitute a bottleneck for identifying molecular mechanisms involving coding and non-coding genomic regions that govern stemness. We focussed on acute myeloid leukemia (AML) as a paradigm of the CSC model and developed a patient-derived system termed OCI-AML22 that recapitulates the cellular hierarchy driven by leukemia stem cells (LSC). Through classical flow sorting and functional analyses, we established that a single phenotypic population is highly enriched for LSC. The LSC fraction can be easily isolated and serially expanded in culture or in xenografts while faithfully recapitulating functional, transcriptional and epigenetic features of primary LSCs. A novel non-coding regulatory element was identified with a new computational approach using functionally validated primary AML LSC fractions and its role in LSC stemness validated through efficient CRISPR editing using methods optimized for OCI-AML22 LSC. Collectively, OCI-AML22 constitutes a valuable resource to uncover mechanisms governing CSC driven malignancies.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia
15.
Curr Opin Plant Biol ; 69: 102262, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952407

RESUMO

Plant development is regulated by transcription factors that often act in more than one process and stage of development. Yet the molecular mechanisms that govern the functional diversity and specificity of these proteins remains far from understood. Flower development provides an ideal context to study these mechanisms since the development of distinct floral organs depends on similar but distinct combinations of transcriptional regulators. Recent work also highlights the importance of leaf polarity regulators as additional key factors in flower initiation, floral organ morphogenesis, and possibly floral organ positioning. A detailed understanding of how these factors work in combination will enable us to address outstanding questions in flower development including how distinct shapes and positions of floral organs are generated. Experimental approaches and computer-based modeling will be required to characterize gene-regulatory networks at the level of single cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Flores , Regulação da Expressão Gênica de Plantas/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 13(1): 3413, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701419

RESUMO

Plant genomes encode a complex and evolutionary diverse regulatory grammar that forms the basis for most life on earth. A wealth of regulome and epigenome data have been generated in various plant species, but no common, standardized resource is available so far for biologists. Here, we present ChIP-Hub, an integrative web-based platform in the ENCODE standards that bundles >10,000 publicly available datasets reanalyzed from >40 plant species, allowing visualization and meta-analysis. We manually curate the datasets through assessing ~540 original publications and comprehensively evaluate their data quality. As a proof of concept, we extensively survey the co-association of different regulators and construct a hierarchical regulatory network under a broad developmental context. Furthermore, we show how our annotation allows to investigate the dynamic activity of tissue-specific regulatory elements (promoters and enhancers) and their underlying sequence grammar. Finally, we analyze the function and conservation of tissue-specific promoters, enhancers and chromatin states using comparative genomics approaches. Taken together, the ChIP-Hub platform and the analysis results provide rich resources for deep exploration of plant ENCODE. ChIP-Hub is available at https://biobigdata.nju.edu.cn/ChIPHub/ .


Assuntos
Genômica , Sequências Reguladoras de Ácido Nucleico , Imunoprecipitação da Cromatina , Genoma de Planta/genética , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Sequências Reguladoras de Ácido Nucleico/genética
17.
Nat Cell Biol ; 24(6): 872-884, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668135

RESUMO

Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Cromatina/metabolismo , DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo
18.
Nat Commun ; 13(1): 2838, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595749

RESUMO

Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell transcriptomics allows characterization of gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during this methodology. To recover the original location of cells in the developing organ is essential to link gene activity with cellular identity and function in plants. Here, we propose a method to reconstruct genome-wide gene expression patterns of individual cells in a 3D flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the method is used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com .


Assuntos
Regulação da Expressão Gênica de Plantas , Meristema , Flores , Expressão Gênica , Proteínas de Plantas/genética , RNA , Análise de Sequência de RNA
19.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491200

RESUMO

With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.


Assuntos
Células Vegetais , Agricultura , Chlamydomonas reinhardtii , Cloroplastos , Biologia Computacional , Processamento de Imagem Assistida por Computador , Células Vegetais/fisiologia , Desenvolvimento Vegetal , Plantas/classificação , Plantas/genética , Zea mays
20.
Nat Commun ; 12(1): 4760, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362909

RESUMO

The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Homeodomínio/química , Fatores de Transcrição/química , Proteína AGAMOUS de Arabidopsis/química , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA