Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115553, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769404

RESUMO

Predators in aquatic environments can be exposed to microplastics (MPs) directly through water and indirectly through prey. Laboratory experiments were conducted to study the potential of MP trophic transfer in Baltic Sea littoral food chains of different lengths. The longest studied food chain had three trophic levels: zooplankton, chameleon shrimp (Praunus flexuosus) and rockpool prawn (Palaemon elegans). 10 µm fluorescence microspheres were used as tracer MP particles and MP ingestion was verified with epifluorescence microscopy. Transfer of MPs occurred up to both second and third trophic level. The number of ingested microspheres in both chameleon shrimp and rockpool prawn was higher when the animals were exposed through pre-exposed prey in comparison to direct exposure through the water. The results show that trophic transfer may be an important pathway of and increase the microplastic exposure for some animals at higher trophic levels in highly polluted areas.


Assuntos
Decápodes , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Zooplâncton/metabolismo , Crustáceos/metabolismo , Decápodes/metabolismo , Água , Monitoramento Ambiental
2.
Proc Biol Sci ; 289(1986): 20221159, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350209

RESUMO

Marine heatwaves (MHWs) are increasing in frequency and intensity due to climate change. Several well-documented effects of heatwaves on community structure exist, but examples of their effect on functioning of species, communities or ecosystems remain scarce. We tested the effects of short-term, moderate and strong MHWs on macrofauna bioturbation and associated solute fluxes as examples of ecosystem functioning. We also measured macrofaunal excretion rates to assess effects of temperature on macrofauna metabolism. For this experiment, we used unmanipulated sediment cores with natural animal communities collected from a muddy location at 32 m depth in the northern Baltic Sea. Despite the mechanistic effect of bioturbation remaining unchanged between the treatments, there were significant differences in oxygen consumption, solute fluxes and excretion. Biogeochemical and biological processes were boosted by the moderate heatwave, whereas biogeochemical cycling seemed to decrease under a strong heatwave. A prolonged, moderate heatwave could possibly lead to resource depletion if primary production cannot meet the demands of benthic consumption. By contrast, decreased degradation activities under strong heatwaves could lead to a build-up of organic material and potentially hypoxia. The strong variability and the complexity of the response highlight the context dependency of these processes complicating future predictions.


Assuntos
Mudança Climática , Ecossistema , Animais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA