Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Infect Immun ; 92(4): e0049523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38451080

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCƐ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCƐ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCƐ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.


Assuntos
Mycobacterium tuberculosis , Fosfoinositídeo Fosfolipase C , Tuberculose , Humanos , Camundongos , Animais , Ativação de Macrófagos , Imunidade Inata
2.
Pathogens ; 12(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37764928

RESUMO

HIV and TB are the cause of significant worldwide mortality and pose a grave danger to the global public health. TB is the leading cause of death in HIV-infected persons, with one in four deaths attributable to TB. While the majority of healthy individuals infected with M. tuberculosis (Mtb) are able to control the infection, co-infection with HIV increases the risk of TB infection progressing to TB disease by over 20-fold. While antiretroviral therapy (ART), the cornerstone of HIV care, decreases the incidence of TB in HIV-uninfected people, this remains 4- to 7-fold higher after ART in HIV-co-infected individuals in TB-endemic settings, regardless of the duration of therapy. Thus, the immune control of Mtb infection in Mtb/HIV-co-infected individuals is not fully restored by ART. We do not fully understand the reasons why Mtb/HIV-co-infected individuals maintain a high susceptibility to the reactivation of LTBI, despite an effective viral control by ART. A deep understanding of the molecular mechanisms that govern HIV-induced reactivation of TB is essential to develop improved treatments and vaccines for the Mtb/HIV-co-infected population. We discuss potential strategies for the mitigation of the observed chronic immune activation in combination with both anti-TB and anti-retroviral approaches.

3.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37200107

RESUMO

The ADP ribosyltransferases (PARPs 1-17) regulate diverse cellular processes, including DNA damage repair. PARPs are classified on the basis of their ability to catalyze poly-ADP-ribosylation (PARylation) or mono-ADP-ribosylation (MARylation). Although PARP9 mRNA expression is significantly increased in progressive tuberculosis (TB) in humans, its participation in host immunity to TB is unknown. Here, we show that PARP9 mRNA encoding the MARylating PARP9 enzyme was upregulated during TB in humans and mice and provide evidence of a critical modulatory role for PARP9 in DNA damage, cyclic GMP-AMP synthase (cGAS) expression, and type I IFN production during TB. Thus, Parp9-deficient mice were susceptible to Mycobacterium tuberculosis infection and exhibited increased TB disease, cGAS and 2'3'-cyclic GMP-AMP (cGAMP) expression, and type I IFN production, along with upregulation of complement and coagulation pathways. Enhanced M. tuberculosis susceptibility is type I IFN dependent, as blockade of IFN α receptor (IFNAR) signaling reversed the enhanced susceptibility of Parp9-/- mice. Thus, in sharp contrast to PARP9 enhancement of type I IFN production in viral infections, this member of the MAR family plays a protective role by limiting type I IFN responses during TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , ADP-Ribosilação , Reparo do DNA , Mycobacterium tuberculosis/metabolismo , Nucleotidiltransferases/genética , Poli(ADP-Ribose) Polimerases/genética , Tuberculose/genética
4.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012543

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Linfócitos B , Tecido Linfoide , Centro Germinativo , Fatores de Transcrição
5.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778404

RESUMO

Granulomas are an important hallmark of Mycobacterium tuberculosis (Mtb) infection. They are organized and dynamic structures created by an assembly of immune cells around the sites of infection in the lungs to locally restrict the bacterial growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of phenotypic surface markers. However, very few antibodies are available for model animals used in tuberculosis research, such as non-human primates and rabbits; secreted immunological markers such as cytokines cannot be imaged in situ using antibodies; and traditional phenotypic surface markers do not provide sufficient resolution for the detection of many subtypes and differentiation states of immune cells. Using single-molecule fluorescent in situ hybridization (smFISH) and its derivatives, amplified smFISH (ampFISH) and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of expression of these markers in single cells in situ. A quantitative analysis of combinatorial expressions of these markers allowed us to classify the cells into several subtypes and chart their distributions within granulomas. For one mRNA target, HIF-1α, we were able to image its mRNA and protein in the same cells, demonstrating the specificity of probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.

6.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692017

RESUMO

The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Animais , Humanos , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenase , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo
7.
Lancet HIV ; 9(11): e791-e800, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240834

RESUMO

New tuberculosis vaccine candidates that are in the development pipeline need to be studied in people with HIV, who are at high risk of acquiring Mycobacterium tuberculosis infection and tuberculosis disease and tend to develop less robust vaccine-induced immune responses. To address the gaps in developing tuberculosis vaccines for people with HIV, a series of symposia was held that posed six framing questions to a panel of international experts: What is the use case or rationale for developing tuberculosis vaccines? What is the landscape of tuberculosis vaccines? Which vaccine candidates should be prioritised? What are the tuberculosis vaccine trial design considerations? What is the role of immunological correlates of protection? What are the gaps in preclinical models for studying tuberculosis vaccines? The international expert panel formulated consensus statements to each of the framing questions, with the intention of informing tuberculosis vaccine development and the prioritisation of clinical trials for inclusion of people with HIV.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Infecções por HIV/complicações , Tuberculose/prevenção & controle
8.
Front Immunol ; 13: 777733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275677

RESUMO

Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.


Assuntos
Coinfecção , Infecções por HIV , Interferon Tipo I , Tuberculose Latente , Infecções por Lentivirus , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca , Proteína C-Reativa , Biomarcadores , Infecções por HIV/complicações , Trifosfato de Adenosina
9.
Cureus ; 14(8): e27994, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36120245

RESUMO

Introduction Open necrosectomy in acute infected necrotizing pancreatitis is associated with very high mortality and morbidity. Moreover, if it is performed before four weeks, the benefits are limited. In this study, we evaluated the safety and efficacy of percutaneous catheter drainage (PCD) in patients with acute infected necrotizing pancreatitis. Methods It was a single-center, observational study, where all consecutive patients with proven or probable infected acute necrotizing pancreatitis in whom PCD was performed were studied. The patients who failed to respond to PCD underwent open necrosectomy. Baseline characteristics and the outcome of all included patients, including complications of PCD, were studied. Results A total of 46 patients (males=36, females=10) underwent PCD over a period of 18 months. Fifteen (32.60%) patients succumbed to their illness. PCD benefitted a total of 31 (67.39%) patients; in 17 (36.95%) patients, it worked as a standalone therapy, while in 14 (30.43%) patients, additional surgery was required where it helped to delay the surgery. Median days at which PCD and surgery were performed were 17.5 days (range: 2-28 days) and 33 days (range: 7-70 days), respectively. Lower mean arterial pressure at presentation, presence of multiorgan failure, more than 50% necrosis, higher baseline creatinine and bilirubin levels, and an early surgery were markers of increased mortality. Three (6.5%) patients had PCD-related complications, out of which only one required active intervention. Conclusion PCD in infected acute pancreatic necrosis is safe and effective. In one-third of the patients, it worked as standalone therapy, and in the rest it delayed the surgery beyond four weeks, thereby preventing the complications associated with early aggressive debridement.

10.
Nat Biomed Eng ; 6(8): 979-991, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35986185

RESUMO

Sensitive and specific blood-based assays for the detection of pulmonary and extrapulmonary tuberculosis would reduce mortality associated with missed diagnoses, particularly in children. Here we report a nanoparticle-enhanced immunoassay read by dark-field microscopy that detects two Mycobacterium tuberculosis virulence factors (the glycolipid lipoarabinomannan and its carrier protein) on the surface of circulating extracellular vesicles. In a cohort study of 147 hospitalized and severely immunosuppressed children living with HIV, the assay detected 58 of the 78 (74%) cases of paediatric tuberculosis, 48 of the 66 (73%) cases that were missed by microbiological assays, and 8 out of 10 (80%) cases undiagnosed during the study. It also distinguished tuberculosis from latent-tuberculosis infections in non-human primates. We adapted the assay to make it portable and operable by a smartphone. With further development, the assay may facilitate the detection of tuberculosis at the point of care, particularly in resource-limited settings.


Assuntos
Vesículas Extracelulares , Mycobacterium tuberculosis , Tuberculose , Animais , Estudos de Coortes , Humanos , Tuberculose/diagnóstico , Fatores de Virulência
11.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35862216

RESUMO

A once-weekly oral dose of isoniazid and rifapentine for 3 months (3HP) is recommended by the CDC for treatment of latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of M. tuberculosis bacteria in macaques with asymptomatic LTBI. Twelve Indian-origin rhesus macaques were infected with a low dose (~10 CFU) of M. tuberculosis CDC1551 via aerosol. Six animals were treated with 3HP and 6 were left untreated. The animals were imaged via PET/CT at frequent intervals. Upon treatment completion, all animals except 1 were coinfected with SIV to assess reactivation of LTBI to active tuberculosis (ATB). Four of 6 treated macaques showed no evidence of persistent bacilli or extrapulmonary spread until the study end point. PET/CT demonstrated the presence of significantly more granulomas in untreated animals relative to the treated group. The untreated animals harbored persistent bacilli and demonstrated tuberculosis (TB) reactivation following SIV coinfection, while none of the treated animals reactivated to ATB. 3HP treatment effectively reduced persistent infection with M. tuberculosis and prevented reactivation of TB in latently infected macaques.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Isoniazida/farmacologia , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/microbiologia , Pulmão , Macaca mulatta , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Rifampina/análogos & derivados
12.
Cell Rep ; 39(12): 110983, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732116

RESUMO

Mycobacterium tuberculosis (Mtb) infects 25% of the world's population and causes tuberculosis (TB), which is a leading cause of death globally. A clear understanding of the dynamics of immune response at the cellular level is crucial to design better strategies to control TB. We use the single-cell RNA sequencing approach on lung lymphocytes derived from healthy and Mtb-infected mice. Our results show the enrichment of the type I IFN signature among the lymphoid cell clusters, as well as heat shock responses in natural killer (NK) cells from Mtb-infected mice lungs. We identify Ly6A as a lymphoid cell activation marker and validate its upregulation in activated lymphoid cells following infection. The cross-analysis of the type I IFN signature in human TB-infected peripheral blood samples further validates our results. These findings contribute toward understanding and characterizing the transcriptional parameters at a single-cell depth in a highly relevant and reproducible mouse model of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Imunidade , Células Matadoras Naturais , Pulmão/metabolismo , Camundongos , Tuberculose/metabolismo
13.
Methods Mol Biol ; 2452: 227-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35554911

RESUMO

With the advent of the novel SARS-CoV-2, the entire world has been thrown into chaos with severe disruptions from a normal life. While the entire world was going chaotic, the researchers throughout the world were struggling to contribute to the best of their capabilities to advance the understanding of this new pandemic and fast track the development of novel therapeutics and vaccines. While various animal models have helped a lot to understand the basic physiology, nonhman primates have been promising and much more successful in modelling human diseases compared to other available clinical models. Here we describe the different aspects of modelling the SARS-CoV-2 infection in NHPs along with the associated methods used in NHP immunology.


Assuntos
COVID-19 , Animais , Modelos Animais de Doenças , Pandemias , Primatas , SARS-CoV-2
14.
Pathogens ; 11(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35631065

RESUMO

Despite a century of research into tuberculosis (TB), there is a dearth of reproducible, easily quantifiable, biomarkers that can predict disease onset and differentiate between host disease states. Due to the challenges associated with human sampling, nonhuman primates (NHPs) are utilized for recapitulating the closest possible modelling of human TB. To establish a predictive peripheral biomarker profile based on a larger cohort of rhesus macaques (RM), we analyzed results pertaining to peripheral blood serum chemistry and cell counts from RMs that were experimentally exposed to Mtb in our prior studies and characterized as having either developed active TB (ATB) disease or latent TB infection (LTBI). We compared lung CFU burdens and quantitative pathologies with a number of measurables in the peripheral blood. Based on our results, the investigations were then extended to the study of specific molecules and cells in the lung compartments of a subset of these animals and their immune responses. In addition to the elevated serum C-reactive protein (CRP) levels, frequently used to discern the level of Mtb infection in model systems, reduced serum albumin-to-globulin (A/G) ratios were also predictive of active TB disease. Furthermore, higher peripheral myeloid cell levels, particularly those of neutrophils, kynurenine-to-tryptophan ratio, an indicator of induced expression of the immunosuppressive molecule indoleamine dioxygenase, and an influx of myeloid cell populations could also efficiently discriminate between ATB and LTBI in experimentally infected macaques. These quantifiable correlates of disease were then used in conjunction with a regression-based analysis to predict bacterial load. Our results suggest a potential biomarker profile of TB disease in rhesus macaques, that could inform future NHP-TB research. Our results thus suggest that specific biomarkers may be developed from the myeloid subset of peripheral blood or plasma with the ability to discriminate between active and latent Mtb infection.

15.
Commun Biol ; 5(1): 480, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590096

RESUMO

Mycobacterium tuberculosis (Mtb) is responsible for approximately 1.5 million deaths each year. Though 10% of patients develop tuberculosis (TB) after infection, 90% of these infections are latent. Further, mice are nearly uniformly susceptible to Mtb but their M1-polarized macrophages (M1-MΦs) can inhibit Mtb in vitro, suggesting that M1-MΦs may be able to regulate anti-TB immunity. We sought to determine whether human MΦ heterogeneity contributes to TB immunity. Here we show that IFN-γ-programmed M1-MΦs degrade Mtb through increased expression of innate immunity regulatory genes (Inregs). In contrast, IL-4-programmed M2-polarized MΦs (M2-MΦs) are permissive for Mtb proliferation and exhibit reduced Inregs expression. M1-MΦs and M2-MΦs express pro- and anti-inflammatory cytokine-chemokines, respectively, and M1-MΦs show nitric oxide and autophagy-dependent degradation of Mtb, leading to increased antigen presentation to T cells through an ATG-RAB7-cathepsin pathway. Despite Mtb infection, M1-MΦs show increased histone acetylation at the ATG5 promoter and pro-autophagy phenotypes, while increased histone deacetylases lead to decreased autophagy in M2-MΦs. Finally, Mtb-infected neonatal macaques express human Inregs in their lymph nodes and macrophages, suggesting that M1 and M2 phenotypes can mediate immunity to TB in both humans and macaques. We conclude that human MФ subsets show unique patterns of gene expression that enable differential control of TB after infection. These genes could serve as targets for diagnosis and immunotherapy of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Citocinas/genética , Citocinas/metabolismo , Humanos , Imunidade Inata/genética , Macrófagos/metabolismo , Camundongos , Tuberculose/metabolismo
16.
Am J Respir Crit Care Med ; 206(1): 94-104, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412961

RESUMO

Rationale: Different Mycobacterium tuberculosis (Mtb) strains exhibit variable degrees of virulence in humans and animal models. Differing stress response strategies used by different strains of Mtb could influence virulence. Objectives: We compared the virulence of two strains of Mtb with use in animal model research: CDC1551 and Erdman. Methods: Rhesus macaques, which develop human-like tuberculosis attributes and pathology, were infected with a high dose of either strain via aerosol, and virulence was compared by bacterial burden and pathology. Measurements and Main Results: Infection with Erdman resulted in significantly shorter times to euthanasia and higher bacterial burdens and greater systemic inflammation and lung pathology relative to those infected with CDC1551. Macaques infected with Erdman also exhibited significantly higher early inflammatory myeloid cell influx to the lung, greater macrophage and T cell activity, and higher expression of lung remodeling (extracellular matrix) genes, consistent with greater pathology. Expression of NOTCH4 (neurogenic locus notch homolog 4) signaling, which is induced in response to hypoxia and promotes undifferentiated cellular state, was also higher in Erdman-infected lungs. The granulomas generated by Erdman, and not CDC1551, infection appeared to have larger regions of necrosis, which is strongly associated with hypoxia. To better understand the mechanisms of differential hypoxia induction by these strains, we subjected both to hypoxia in vitro. Erdman induced higher concentrations of DosR regulon relative to CDC1551. The DosR regulon is the global regulator of response to hypoxia in Mtb and critical for its persistence in granulomas. Conclusions: Our results show that the response to hypoxia is a critical mediator of virulence determination in Mtb, with potential impacts on bacillary persistence, reactivation, and efficiency of therapeutics.


Assuntos
Mycobacterium tuberculosis , Animais , Granuloma , Hipóxia , Inflamação/patologia , Pulmão/patologia , Macaca mulatta , Mycobacterium tuberculosis/genética , Virulência
17.
Theranostics ; 12(6): 2948-2962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401822

RESUMO

Rationale: Circulating pathogen-derived proteins can serve as useful biomarkers for infections but may be detected with poor sensitivity and specificity by standard immunoassays due to masking effects and cross-reactivity. Mass spectrometry (MS)-read immunoassays for biomarker-derived peptides can resolve these issues, but lack standard workflows to select species-specific peptides with strong MS signal that are suitable for antibody generation. Methods:Using a Mycobacterium tuberculosis (Mtb) protein as an example, candidate peptides were selected by length, species-specificity, MS intensity, and antigenicity score. MS data from spiked healthy serum was employed to define MS feature thresholds, including a novel measure of internal MS data correlation, to produce a peak detection algorithm. Results: This algorithm performed better in rejecting false positive signal than each of its criteria, including those currently employed for this purpose. Analysis of an Mtb peptide biomarker (CFP-10pep) by this approach identified tuberculosis cases not detected by microbiologic assays, including extrapulmonary tuberculosis and tuberculosis cases in children infected with HIV-1. Circulating CFP-10pep levels measured in a non-human primate model of tuberculosis distinguished disease from asymptomatic infection and tended to correspond with Mtb granuloma size, suggesting that it could also serve as a surrogate marker for Mtb burden and possibly treatment response. Conclusions: These biomarker selection and analysis approach appears to have strong potential utility for infectious disease diagnosis, including cryptic infections, and possibly to monitor changes in Mtb burden that may reflect disease progression or a response to treatment, which are critical needs for more effective disease control.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Biomarcadores , Peptídeos , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologia
19.
Toxicol Pathol ; 50(3): 280-293, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128980

RESUMO

Coronavirus disease 2019 (COVID-19) in humans has a wide range of presentations, ranging from asymptomatic or mild symptoms to severe illness. Suitable animal models mimicking varying degrees of clinical disease manifestations could expedite development of therapeutics and vaccines for COVID-19. Here we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulted in subclinical disease in rhesus macaques with mild pneumonia and clinical disease in Syrian hamsters with severe pneumonia. SARS-CoV-2 infection was confirmed by formalin-fixed, paraffin-embedded (FFPE) polymerase chain reaction (PCR), immunohistochemistry, or in situ hybridization. Replicating virus in the lungs was identified using in situ hybridization or virus plaque forming assays. Viral encephalitis, reported in some COVID-19 patients, was identified in one macaque and was confirmed with immunohistochemistry. There was no evidence of encephalitis in hamsters. Severity and distribution of lung inflammation were substantially more in hamsters compared with macaques and exhibited vascular changes and virus-induced cytopathic changes as seen in COVID-19 patients. Neither the hamster nor macaque models demonstrated evidence for multisystemic inflammatory syndrome (MIS). Data presented here demonstrate that macaques may be appropriate for mechanistic studies of mild asymptomatic COVID-19 pneumonia and COVID-19-associated encephalitis, whereas Syrian hamsters may be more suited to study severe COVID-19 pneumonia.


Assuntos
COVID-19 , Encefalite , Animais , Vacinas contra COVID-19 , Cricetinae , Modelos Animais de Doenças , Encefalite/patologia , Humanos , Pulmão/patologia , Macaca mulatta , Mesocricetus , SARS-CoV-2
20.
Nat Commun ; 13(1): 679, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115549

RESUMO

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.


Assuntos
COVID-19/imunologia , Interferons/farmacologia , Células Mieloides/imunologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais , Lavagem Broncoalveolar , Modelos Animais de Doenças , Humanos , Imunidade Inata , Inflamação , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Interferons/genética , Pulmão/imunologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA