Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cardiovasc Res ; 120(12): 1456-1471, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39001869

RESUMO

AIMS: The histone deacetylase 6 (HDAC6) inhibitor, tubastatin A (TubA), reduces myocardial ischaemia/reperfusion injury (MIRI) in type 1 diabetic rats. It remains unclear whether HDAC6 regulates MIRI in type 2 diabetic animals. Diabetes augments the activity of HDAC6 and the generation of tumour necrosis factor alpha (TNF-α) and impairs mitochondrial complex I (mCI). Here, we examined how HDAC6 regulates TNF-α production, mCI activity, mitochondria, and cardiac function in type 1 and type 2 diabetic mice undergoing MIRI. METHODS AND RESULTS: HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent MIRI in vivo or ex vivo in a Langendorff-perfused system. We found that MIRI and diabetes additively augmented myocardial HDAC6 activity and generation of TNF-α, along with cardiac mitochondrial fission, low bioactivity of mCI, and low production of adenosine triphosphate. Importantly, genetic disruption of HDAC6 or TubA decreased TNF-α levels, mitochondrial fission, and myocardial mitochondrial nicotinamide adenine dinucleotide levels in ischaemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and improved cardiac function. Moreover, HDAC6 knockout or TubA treatment decreased left ventricular dilation and improved cardiac systolic function 28 days after MIRI. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. Hypoxia/reoxygenation augmented HDAC6 activity and TNF-α levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSION: HDAC6 is an essential negative regulator of MIRI in diabetes. Genetic deletion or pharmacologic inhibition of HDAC6 protects the heart from MIRI by limiting TNF-α-induced mitochondrial injury in experimental diabetes.


Assuntos
Diabetes Mellitus Experimental , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fator de Necrose Tumoral alfa , Animais , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Masculino , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Preparação de Coração Isolado , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Transdução de Sinais , Camundongos , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Indóis
2.
Stem Cell Rev Rep ; 20(7): 1843-1853, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38941039

RESUMO

Intravenous infusion has been used as the method of cell delivery in many preclinical studies as well as in some early clinical trials. Among its advantages are broad distribution, ability to handle a large-volume infusion, and ease of access. Progenitor cells used in cell-based therapy act through their secretomes, rather than their ability to differentiate into lineage-specific cell type. Since not all progenitor cells have similar secretome potency, the innate abilities of the secretome of cells used in clinical trials will obviously dictate their effectiveness. We previously found that cardiac neonatal mesenchymal stromal cells (nMSCs) are more effective in repairing the infarcted myocardium compared to adult mesenchymal stromal cells (aMSCs) due to their robust secretome (Sharma et al Circulation Research 120:816-834, 2017). In this study, we explored the efficacy of intravenous (IV) delivery of nMSCs for myocardial recovery. Six-week-old male Brown Norway rats underwent acute MI by ligation of the left anterior descending artery, followed by IV infusion of cell dose 5 × 106 nMSCs/rat body weight (kg) or saline on days 0 and 5. We found that cardiac parameters in the rodent ischemia model improved 1 month after nMSCs infusion, and the result is comparable with the intramyocardial injection of nMSCs. Tracking the infused cells in target organ revealed that their movement after IV delivery was mediated by the cell surface receptor CD44. Systemic injection of nMSCs stimulated immunomodulatory responses specifically by increasing FoxP3+ T-regulatory cell influenced anti-inflammatory macrophages (M2) in heart. These data demonstrate that nMSCs promote immunogenic tolerance via CD44-driven T-reg/M2 stimulation that helps nMSCs for longer viability in the injured myocardium for better functional recovery. Our data also demonstrate a rationale for a clinical trial of IV infusion of nMSCs to promote cardiac function improvement in the ischemic patients.


Assuntos
Fatores de Transcrição Forkhead , Receptores de Hialuronatos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Linfócitos T Reguladores , Animais , Masculino , Ratos , Animais Recém-Nascidos , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Receptores de Hialuronatos/metabolismo , Infusões Intravenosas , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Linfócitos T Reguladores/imunologia , Ratos Endogâmicos BN
3.
JACC Basic Transl Sci ; 9(3): 303-318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559623

RESUMO

Most congenital heart defect (CHD) cases are attributed to nongenetic factors; however, the mechanisms underlying nongenetic factor-induced CHDs are elusive. Maternal diabetes is one of the nongenetic factors, and this study aimed to determine whether impaired mitochondrial fusion contributes to maternal diabetes-induced CHDs and if mitochondrial fusion activators, teriflunomide and echinacoside, could reduce CHD incidence in diabetic pregnancy. We demonstrated maternal diabetes-activated FoxO3a increases miR-140 and miR-195, which in turn represses Mfn1 and Mfn2, leading to mitochondrial fusion defects and CHDs. Two mitochondrial fusion activators are effective in preventing CHDs in diabetic pregnancy.

4.
iScience ; 26(10): 107980, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37868626

RESUMO

Cardiac-derived c-kit+ progenitor cells (CPCs) are under investigation in the CHILD phase I clinical trial (NCT03406884) for the treatment of hypoplastic left heart syndrome (HLHS). The therapeutic efficacy of CPCs can be attributed to the release of extracellular vesicles (EVs). To understand sources of cell therapy variability we took a machine learning approach: combining bulk CPC-derived EV (CPC-EV) RNA sequencing and cardiac-relevant in vitro experiments to build a predictive model. We isolated CPCs from cardiac biopsies of patients with congenital heart disease (n = 29) and the lead-in patients with HLHS in the CHILD trial (n = 5). We sequenced CPC-EVs, and measured EV inflammatory, fibrotic, angiogeneic, and migratory responses. Overall, CPC-EV RNAs involved in pro-reparative outcomes had a significant fit to cardiac development and signaling pathways. Using a model trained on previously collected CPC-EVs, we predicted in vitro outcomes for the CHILD clinical samples. Finally, CPC-EV angiogenic performance correlated to clinical improvements in right ventricle performance.

5.
Stem Cell Rev Rep ; 19(6): 2038-2051, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37261668

RESUMO

Stem cell therapy provides a hope to no option heart disease patient group. Stem cells work via different mechanisms of which paracrine mechanism is reported to justify most of the effects. Therefore, identifying the control arms for paracrine cocktail production is necessary to tailor stem cell functions in disease contextual manner. In this study, we describe a novel paracrine cocktail regulatory axis, in stem cells, to enhance their cardioprotective abilities. We identified that HSF1 knockout resulted in reduced cardiac regenerative abilities of mesenchymal stem cells (MSCs) while its overexpression had opposite effects. Altered exosome biognesis and their miRNA cargo enrichment were found to be underlying these altered regenerative abilities. Decreased production of exosomes by MSCs accompanied their loss of HSF1 and vice versa. Moreover, the exosomes derived from HSF1 depleted MSCs showed significantly reduced candidate miRNA expression (miR-145, miR-146, 199-3p, 199b and miR-590) compared to those obtained from HSF1 overexpressing MSCs. We further discovered that HSF1 mediates miRNAs' enrichment into exosomes via Y binding protein 1 (YBX1) and showed, by loss and gain of function strategies, that miRNAs' enrichment in mesenchymal stem cell derived exosomes is deregulated with altered YBX1 expression. It was finally demonstrated that absence of YBX1 in MSCs, with normal HSF1 expression, resulted in significant accumulation of candidate miRNAs into the cells. Together, our data shows that HSF1 plays a critical role in determining the regenerative potential of stem cells. HSF1 does that by affecting exosome biogenesis and miRNA cargo sorting via regulation of YBX1 gene expression.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular
6.
Epigenetics ; 18(1): 2195307, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37005704

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM. The transcription of methylation-related genes did not significantly differ between HCM and normal myocardium. Nevertheless, the former had an altered DNAme profile compared with the latter. The hypermethylated and hypomethylated sites in HCM tissues had chromosomal distributions and functional enrichment of correlated genes differing from those of their normal tissue counterparts. The GO analysis of network underlying the genes correlated with DNAme alteration and differentially expressed genes (DEGs) shows functional clusters centred on immune cell function and muscle system processes. In KEGG analysis, only the calcium signalling pathway was enriched either by the genes correlated with changes in DNAme or DEGs. The protein-protein interactions (PPI) underlying the genes altered at both the DNAme and transcriptional highlighted two important functional clusters. One of these was related to the immune response and had the estrogen receptor-encoding ESR1 gene as its node. The other cluster comprised cardiac electrophysiology-related genes. Intelliectin-1 (ITLN1), a component of the innate immune system, was transcriptionally downregulated in HCM and had a hypermethylated site within 1500 bp upstream of the ITLN1 transcription start site. Estimates of immune infiltration demonstrated a relative decline in immune cell population diversity in HCM. A combination of DNAme and transcriptome profiles may help identify and develop new therapeutic targets for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Epigenoma , Humanos , Metilação de DNA , Perfilação da Expressão Gênica , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Transcriptoma , Eletrofisiologia
7.
Stem Cell Res ; 69: 103092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086582

RESUMO

We generated a new iPSC line (LCHi003-A) from the pediatric dilated cardiomyopathy patient carrying the de novo mutation on DNM1L gene. The new iPSC line expressed high pluripotent markers and were capable to differentiate into trilineage.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatia Dilatada/genética , Insuficiência Cardíaca/genética , Mutação/genética , Dinaminas/metabolismo
9.
Eur Heart J Open ; 3(2): oead002, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950450

RESUMO

Aims: Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation. Methods and results: We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation. Lomecel-B, an investigational cell therapy consisting of allogeneic medicinal signalling cells (MSCs), was delivered via intramyocardial injections. The primary endpoint was safety, and measures of RV function for potential efficacy were obtained. Ten patients were treated. None experienced major adverse cardiac events. All were alive and transplant-free at 1-year post-treatment, and experienced growth comparable to healthy historical data. Cardiac magnetic resonance imaging (CMR) suggested improved tricuspid regurgitant fraction (TR RF) via qualitative rater assessment, and via significant quantitative improvements from baseline at 6 and 12 months post-treatment (P < 0.05). Global longitudinal strain (GLS) and RV ejection fraction (EF) showed no declines. To understand potential mechanisms of action, circulating exosomes from intramyocardially transplanted MSCs were examined. Computational modelling identified 54 MSC-specific exosome ribonucleic acids (RNAs) corresponding to changes in TR RF, including miR-215-3p, miR-374b-3p, and RNAs related to cell metabolism and MAPK signalling. Conclusion: Intramyocardially delivered Lomecel-B appears safe in HLHS patients and may favourably affect RV performance. Circulating exosomes of transplanted MSC-specific provide novel insight into bioactivity. Conduct of a controlled phase trial is warranted and is underway.Trial registration number NCT03525418.

10.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865233

RESUMO

BACKGROUND: Diabetes augments activity of histone deacetylase 6 (HDAC6) and generation of tumor necrosis factor α (TNFα) and impairs the physiological function of mitochondrial complex I (mCI) which oxidizes reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide to sustain the tricarboxylic acid cycle and ß-oxidation. Here we examined how HDAC6 regulates TNFα production, mCI activity, mitochondrial morphology and NADH levels, and cardiac function in ischemic/reperfused diabetic hearts. METHODS: HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent myocardial ischemia/reperfusion injury in vivo or ex vivo in a Langendorff-perfused system. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. We compared the activities of HDAC6 and mCI, TNFα and mitochondrial NADH levels, mitochondrial morphology, myocardial infarct size, and cardiac function between groups. RESULTS: Myocardial ischemia/reperfusion injury and diabetes synergistically augmented myocardial HDCA6 activity, myocardial TNFα levels, and mitochondrial fission and inhibited mCI activity. Interestingly, neutralization of TNFα with an anti-TNFα monoclonal antibody augmented myocardial mCI activity. Importantly, genetic disruption or inhibition of HDAC6 with tubastatin A decreased TNFα levels, mitochondrial fission, and myocardial mitochondrial NADH levels in ischemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and ameliorated cardiac dysfunction. In H9c2 cardiomyocytes cultured in high glucose, hypoxia/reoxygenation augmented HDAC6 activity and TNFα levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSIONS: Augmenting HDAC6 activity inhibits mCI activity by increasing TNFα levels in ischemic/reperfused diabetic hearts. The HDAC6 inhibitor, tubastatin A, has high therapeutic potential for acute myocardial infarction in diabetes.

11.
iScience ; 26(2): 105963, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818289

RESUMO

Cardiac fibrosis is a hallmark in late-stage familial dilated cardiomyopathy (DCM) patients, although the underlying mechanism remains elusive. Cardiac exosomes (Exos) have been reported relating to fibrosis in ischemic cardiomyopathy. Thus, we investigated whether Exos secreted from the familial DCM cardiomyocytes could promote fibrogenesis. Using human iPSCs differentiated cardiomyocytes we isolated Exos of angiotensin II stimulation conditioned media from either DCM or control (CTL) cardiomyocytes. Of interest, cultured cardiac fibroblasts had increased fibrogenesis following exposure to DCM-Exos rather than CTL-Exos. Meanwhile, injecting DCM-Exos into mouse hearts enhanced cardiac fibrosis and impaired cardiac function. Mechanistically, we identified the upregulation of miRNA-218-5p in the DCM-Exos as a critical contributor to fibrogenesis. MiRNA-218-5p activated TGF-ß signaling via suppression of TNFAIP3, a master inflammation inhibitor. In conclusion, our results illustrate a profibrotic effect of cardiomyocytes-derived Exos that highlights an additional pathogenesis pathway for cardiac fibrosis in DCM.

12.
Cancer ; 129(4): 521-530, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36484171

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) are an effective therapeutic strategy, improving the survival of patients with lung cancer compared with conventional treatments. However, novel predictive biomarkers are needed to stratify which patients derive clinical benefit because the currently used and highly heterogenic histological PD-L1 has shown low accuracy. Liquid biopsy is the analysis of biomarkers in body fluids and represents a minimally invasive tool that can be used to monitor tumor evolution and treatment effects, potentially reducing biases associated with tumor heterogeneity associated with tissue biopsies. In this context, cytokines, such as transforming growth factor-ß (TGF-ß), can be found free in circulation in the blood and packaged into extracellular vesicles (EVs), which have a specific delivery tropism and can affect in tumor/immune system interaction. TGF-ß is an immunosuppressive cytokine that plays a crucial role in tumor immune escape, treatment resistance, and metastasis. Thus, we aimed to evaluate the predictive value of circulating and EV TGF-ß in patients with non-small-cell lung cancer receiving ICIs. METHODS: Plasma samples were collected in 33 patients with advanced non-small-cell lung cancer before and during treatment with ICIs. EV were isolated from plasma by serial ultracentrifugation methods and circulating and EV TGF-ß expression levels were evaluated by enzyme-linked immunosorbent assay. RESULTS: Baseline high expression of TGF-ß in EVs was associated with nonresponse to ICIs as well as shorter progression-free survival and overall survival, outperforming circulating TGF-ß levels and tissue PD-L1 as a predictive biomarker. CONCLUSION: If validated, EV TGF-ß could be used to improve patient stratification, increasing the effectiveness of treatment with ICIs and potentially informing combinatory treatments with TGF-ß blockade. PLAIN LANGUAGE SUMMARY: Treatment with immune-checkpoint inhibitors (ICIs) has improved the survival of some patients with lung cancer. However, the majority of patients do not benefit from this treatment, making it essential to develop more reliable biomarkers to identify patients most likely to benefit. In this pilot study, the expression of transforming growth factor-ß (TGF-ß) in blood circulation and in extracellular vesicles was analyzed. The levels of extracellular vesicle TGF-ß before treatment were able to determine which patients would benefit from treatment with ICIs and have a longer survival with higher accuracy than circulating TGF-ß and tissue PD-L1, which is the currently used biomarker in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Fator de Crescimento Transformador beta , Projetos Piloto , Imunoterapia/métodos , Biomarcadores Tumorais , Vesículas Extracelulares/patologia , Fatores de Crescimento Transformadores/uso terapêutico
13.
J Thorac Cardiovasc Surg ; 165(2): e56-e65, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34465468

RESUMO

OBJECTIVE: After cardiac injury, endogenous repair mechanisms are ineffective. However, cell-based therapies provide a promising clinical intervention based on their ability to restore and remodel injured myocardium due to their paracrine factors. Recent clinical trials have demonstrated that adult cardiosphere-derived cell therapy is safe for the treatment of ischemic heart failure, although with limited regenerative potential. The limited efficiency of cardiosphere-derived cells after myocardial infarction is due to the inferior quality of their secretome. This study sought to augment the therapeutic potential of cardiosphere-derived cells by modulating hypoxia-inducible factor-1α, a regulator of paracrine factors. METHODS: Cardiosphere-derived cells were isolated and expanded from the right atrial appendage biopsies of patients undergoing cardiac surgery. To study the effect of hypoxia-inducible factor-1α on the secretome, cardiosphere-derived cells were transduced with hypoxia-inducible factor-1α-overexpressing lentivirus, and various cardioprotective factors within the secretome were quantified using enzyme-linked immunosorbent assays. Comparative analysis of the regenerative potential of cardiosphere-derived cells was performed in a rat myocardial infarction model. RESULTS: Mechanistically, overexpression of hypoxia-inducible factor-1α in adult cardiosphere-derived cells led to the enrichment of the secretome with vascular endothelial growth factor A, angiopoietin 1, stromal cell-derived factor 1α, and basic fibroblast growth factor. Intramyocardial administration of cardiosphere-derived cells transduced with hypoxia-inducible factor-1α after myocardial infarction significantly improved left ventricular ejection fraction, fractional shortening, left ventricular end-systolic volume, and cardiac output. Functional improvement of the rat heart correlated with improved adaptive remodeling of the infarcted myocardium by enhanced angiogenesis and decreased myocardial fibrosis. We also showed that hypoxia-inducible factor-1α expression in cardiosphere-derived cells was adversely affected by aging. CONCLUSIONS: Hypoxia-inducible factor-1α improves the functional potency of cardiosphere-derived cells to preserve myocardial function after myocardial infarction by enriching the cardiosphere-derived cells' secretome with cardioprotective factors. This strategy may be useful for improving the efficacy of allogeneic cell-based therapies in future clinical trials.


Assuntos
Infarto do Miocárdio , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miocárdio/patologia , Secretoma , Volume Sistólico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda
16.
iScience ; 25(8): 104656, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35847554

RESUMO

Successful cell therapy requires cells to resist the hostile ischemic myocardium, be retained to continue secreting cardioprotective growth factors/exosomes, and resist immunological host responses. Clinically relevant stem/progenitor cells in a rodent model of acute myocardial infarction (MI) demonstrated that neonatal cardiac mesenchymal stromal cells (nMSCs) provide the most robust cardiac functional recovery. Transplanted nMSCs significantly increased the number of tissue reparative macrophages and regulatory T-cells and decreased monocyte-derived inflammatory macrophages and neutrophils in the host myocardium. mRNA microarray and single-cell analyses combined with targeted depletion studies established CD47 in nMSCs as a key molecule responsible for cell retention in the myocardium through an antiphagocytic mechanism regulated by miR34a-5p. Gain and loss-of-function studies demonstrated that miR34a-5p also regulated the production of exosomes and cardioprotective paracrine factors in the nMSC secretome. In conclusion, miR34a-5p and CD47 play an important role in determining the composition of nMSCs' secretome and immune evasion, respectively.

17.
Commun Biol ; 5(1): 648, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778435

RESUMO

Various types of progenitors initiate individual organ formation and their crosstalk orchestrates morphogenesis for the entire embryo. Here we show that progenitor exosomal communication across embryonic organs occurs in normal development and is altered in embryos of diabetic pregnancy. Endoderm fibroblast growth factor 2 (FGF2) stimulates mesoderm Flk-1+ vascular progenitors to produce exosomes containing the anti-stress protein Survivin. These exosomes act on neural stem cells of the neuroepithelium to facilitate neurulation by inhibiting cellular stress and apoptosis. Maternal diabetes causes Flk-1+ progenitor dysfunction by suppressing FGF2 through DNA hypermethylation. Restoring endoderm FGF2 prevents diabetes-induced survivin reduction in Flk-1+ progenitor exosomes. Transgenic Survivin expression in Flk-1+ progenitors or in utero delivery of survivin-enriched exosomes restores cellular homeostasis and prevents diabetes-induced neural tube defects (NTDs), whereas inhibiting exosome production induces NTDs. Thus, functional inter-organ communication via Flk-1 exosomes is vital for neurulation and its disruption leads to embryonic anomalies.


Assuntos
Diabetes Gestacional , Exossomos , Defeitos do Tubo Neural , Feminino , Fator 2 de Crescimento de Fibroblastos , Humanos , Neurulação , Gravidez , Survivina
18.
J Transl Med ; 20(1): 323, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864544

RESUMO

BACKGROUND: Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism. METHODS AND RESULTS: To test this hypothesis, we used crossover rat strains for exploring the mechanism of myocardial repair by allogenic CPCs. Human CPCs (hCPCs) were isolated from adult patients undergoing coronary artery bypass grafting, and rat CPCs (rCPCs) were isolated from male Wistar-Kyoto (WKY) rat hearts. Allogenic rCPCs suppressed the proliferation of T-cells observed in mixed lymphocyte reactions in vitro. Transplanted syngeneic or allogeneic rCPCs significantly increased cardiac function in a rat myocardial infarct (MI) model, whereas xenogeneic CPCs did not. Allogeneic rCPCs stimulated immunomodulatory responses by specifically increasing T-regulatory cells and M2 polarization, while maintaining their cardiac recovery potential and safety profile. Mechanistically, we confirmed the inactivation of NF-kB in Treg cells and increased M2 macrophages in the myocardium after MI by transplanted CPCs derived GDF15 and it's uptake by CD48 receptor on immune cells. CONCLUSION: Collectively, these findings strongly support the active immunomodulatory properties and robust therapeutic potential of allogenic CPCs in post-MI cardiac dysfunction.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Infarto do Miocárdio , Adulto , Animais , Fator 15 de Diferenciação de Crescimento , Humanos , Masculino , Células-Tronco Multipotentes , Infarto do Miocárdio/terapia , Miocárdio , Miócitos Cardíacos , Ratos , Ratos Endogâmicos WKY , Transplante de Células-Tronco
19.
Circ Res ; 131(2): 151-164, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35722872

RESUMO

BACKGROUND: Establishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells instruct myocardial growth by secreting essential factors including FGF (fibroblast growth factor) 9 and IGF (insulin-like growth factor) 2. However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation. The current study is to investigate whether and how HDAC (histone deacetylase) 3 in the developing epicardium regulates myocardial growth. METHODS: Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of HDAC3 in the developing epicardium. RESULTS: We deleted Hdac3 in the developing murine epicardium, and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of epicardium-derived cells. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly downregulated in Hdac3 KO mouse epicardial cells. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO mouse epicardial cells and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO mouse epicardial cells. CONCLUSIONS: Our findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322 or miR-503, providing novel insights in elucidating the etiology of congenital heart defects and conceptual strategies to promote myocardial regeneration.


Assuntos
Coração/crescimento & desenvolvimento , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Pericárdio/metabolismo , Transdução de Sinais
20.
J Exp Clin Cancer Res ; 41(1): 186, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35650597

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) changed the therapeutic landscape of patients with lung cancer. However, only a subset of them derived clinical benefit and evidenced the need to identify reliable predictive biomarkers. Liquid biopsy is the non-invasive and repeatable analysis of biological material in body fluids and a promising tool for cancer biomarkers discovery. In particular, there is growing evidence that extracellular vesicles (EVs) play an important role in tumor progression and in tumor-immune interactions. Thus, we evaluated whether extracellular vesicle PD-L1 expression could be used as a biomarker for prediction of durable treatment response and survival in patients with non-small cell lung cancer (NSCLC) undergoing treatment with ICIs. METHODS: Dynamic changes in EV PD-L1 were analyzed in plasma samples collected before and at 9 ± 1 weeks during treatment in a retrospective and a prospective independent cohorts of 33 and 39 patients, respectively. RESULTS: As a result, an increase in EV PD-L1 was observed in non-responders in comparison to responders and was an independent biomarker for shorter progression-free survival and overall survival. To the contrary, tissue PD-L1 expression, the commonly used biomarker, was not predictive neither for durable response nor survival. CONCLUSION: These findings indicate that EV PD-L1 dynamics could be used to stratify patients with advanced NSCLC who would experience durable benefit from ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Vesículas Extracelulares/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA