Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133474, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244457

RESUMO

Bisphenols' widespread use in day to day life has enabled its existence in various compartments of the environment. Bisphenol A (BPA) is utilized as a monomer in manufacturing polycarbonate plastics, epoxy resins, as well as flame retardants and is also considered as an endocrine disruptor. This study focuses on determining BPA concentration in daily-use food-grade plastic containers, in addition to its toxicity evaluation in environmental samples contaminated by BPA leachates. The highest concentration of BPA was observed in black poly bags (42.78 ppm), followed by slice juice bottles and infant milk bottles. Toxicity tests revealed significant impacts on Rhizobium and Chlorella sp. as a representative species of soil and aquatic environment respectively. To biodegrade the BPA, two potential strains, Brucella sp. and Brevibacillus parabrevis, were isolated from a landfill site. Qualitative and quantitative evaluation of biodegraded BPA through U-HPLC and GC-MSMS showed various metabolites of BPA. Results indicate the native bacterial isolates as potential candidates for BPA degradation while transforming this contaminant to a less toxic and hazardous form. The study also proposes the risk associated with food-grade plastic containers and recommends to establish a sustainable way for plastic waste management.


Assuntos
Chlorella , Humanos , Lactente , Biodegradação Ambiental , Chlorella/metabolismo , Fenóis/metabolismo , Compostos Benzidrílicos/análise , Plásticos/toxicidade
2.
Mar Pollut Bull ; 193: 115206, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392590

RESUMO

Microplastics (MPs) are plastic particles with sizes between 1 µm and 5 mm with a ubiquitous presence in aquatic ecosystems. MPs harm marine life and can cause severe health problems for humans. Advanced oxidation processes (AOPs) that involve the in-situ generation of highly oxidant hydroxyl radicals can be an alternative to fight MPs pollution. Of all the AOPs, photocatalysis has been proven a clean technology to overcome microplastic pollution. This work proposes novel C,N-TiO2/SiO2 photocatalysts with proper visible-active properties to degrade polyethylene terephthalate (PET) MPs. Photocatalysis was performed in an aqueous medium and at room temperature, evaluating the influence of two pH values (pH 6 and 8). The results demonstrated that the degradation of the PET MPs by C,N-TiO2/SiO2 semiconductors is possible, achieving mass losses between 9.35 and 16.22 %.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Polietilenotereftalatos , Dióxido de Silício/química , Poluentes Químicos da Água/análise
3.
Arch Microbiol ; 204(8): 482, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834020

RESUMO

Malathion is widely used as an agricultural insecticide, but its toxic nature makes it a serious environmental contaminant. To screen indigenous bacteria for malathion degradation, a strain MAGK3 capable of utilizing malathion as its sole carbon and energy source was isolated from Pennisetum glaucum agricultural soil. Based on morphological and biochemical characteristics and 16S rDNA sequence analysis, strain MAGK3 was identified as Micrococcus aloeverae. The strain was cultured in the presence of malathion under aerobic and energy-restricting conditions, and it grew well in MSM containing malathion (1000 µl/L), showing the highest specific growth rate at 500 µl/L. Reverse-phase UHPLC-DAD analysis indicated that 100%, 90.48%, 84.27%, 75.46%, 66.65%, and 31.96% of malathion were degraded within 15 days in liquid culture augmented with 50, 100, 200, 300, 500, and 1000 µl/L concentrations of commercial malathion, respectively. Confirmation of malathion degradation to malathion mono, diacids, and phosphorus moiety was performed by Q-TOF-MS analysis, and a pathway of biodegradation was proposed. The influence of co-substrates was also examined to optimize biodegradation further. Kinetic studies based on different models were conducted, and the results demonstrated good conformity with the first-order model. Malathion degradation process by Micrococcus aloeverae was characterized by R2 of 0.95, and the initial concentration was reduced by 50% i.e. (DT50) in 8.11 d at an initial concentration of 500 µl/L. This establishes the Micrococcus sp. as a potent candidate for active bioremediation of malathion in liquid cultures as it can withstand high malathion load and can possibly impact the development strategies of bioremediation for its elimination.


Assuntos
Malation , Microbiologia do Solo , Biodegradação Ambiental , Cinética , Malation/química , Malation/metabolismo , Malation/farmacologia , Micrococcus/genética , Micrococcus/metabolismo
4.
Cancer J ; 28(4): 257-262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880934

RESUMO

ABSTRACT: Adoptive cellular therapies are making major strides in the treatment of cancer, both for hematologic and solid tumors. These cellular products include chimeric antigen receptor T cells and T-cell receptor-modified T cells, tumor-infiltrating lymphocytes, marrow-infiltrating T cells, natural killer cells as well as macrophage-based therapeutics. Advancement in genomics, computational biology, immunology, and cell therapy manufacturing has facilitated advancement of adoptive T cell therapies into the clinic, whereas clinical efficacy has driven Food and Drug Administration approvals. The growth of adoptive cellular therapy has, in turn, led to innovation in the preclinical models available, from ex vivo cell-based models to in vivo xenograft models of treatment. This review focuses on the development and application of in vitro models and in vivo models (cell line xenograft, humanized mice, and patient-derived xenograft models) that directly evaluate these human cellular products.


Assuntos
Imunoterapia Adotiva , Neoplasias , Animais , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Camundongos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T
5.
Biodegradation ; 33(5): 419-439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35575957

RESUMO

Malathion, a pesticide used to control pests in crops, vegetables, fruits, and livestock. Its widespread and indiscriminate usage has ensued in different ecological issues, thus, it's vital to remediate this insecticide. Malathion degrading bacterium Bacillus sp. AGM5, isolated from pesticide contaminated agricultural field was cultured in presence of different malathion concentrations under aerobic and energy restrictive conditions and was found effective at malathion degradation. Recovered malathion was extracted based on QuEChERS approach and then analyzed by UHPLC. About 39.5% of malathion biodegradation was observed at 300 µlL-1 after 96 h of incubation with the tested bacteria which increased to 58.5% and 72.5% after 240, and 360 h of incubation, respectively. To further enhance malathion biodegradation, the effects of co-substrates, pH, temperature, initial malathion concentration, agitation (rpm), and inoculum size were evaluated using Taguchi methodology. Taguchi DOE's ability to predict the optimal response was established experimentally via optimised levels of these factors (glucose-0.1%, yeast extract-0.1%, inoculum size-2% wv-1, malathion concentration 300 µlL-1, rpm-150, pH-7, temperature 40 °C), whereby biodegradation rate was enhanced to 95.49% after 38 h. Confirmation of malathion biodegradation was performed by UHPLC, Q-TOF-MS, GC-MS analysis and a possible degradation pathway was proposed for malathion biodegradation. First order kinetic model was appropriate to describe malathion biodegradation. The Taguchi DOE proved to be viable tool for optimizing culture conditions and analysing the interactions between process parameters in order to attain the best feasible combination for maximum malathion degradation. These results could influence the development of a bioremediation strategy.


Assuntos
Bacillus , Praguicidas , Bacillus/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Malation/metabolismo , Praguicidas/metabolismo
6.
Oncogene ; 40(4): 848-862, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288882

RESUMO

Pancreatic cancer (PC) is difficult to defeat due to mechanism (s) driving metastasis and drug resistance. Cancer stemness is a major challenging phenomenon associated with PC metastasis and limiting therapy efficacy. In this study, we evaluated the pre-clinical and clinical significance of eradicating pancreatic cancer stem cells (PCSC) and its components using a pan-EGFR inhibitor afatinib in combination with gemcitabine. Afatinib in combination with gemcitabine significantly reduced KrasG12D/+; Pdx-1 Cre (KC) (P < 0.01) and KrasG12D/+; p53R172H/+; Pdx-1 Cre (KPC) (P < 0.05) derived mouse tumoroids and KPC-derived murine syngeneic cell line growth compared to gemcitabine/afatinib alone treatment. The drug combination also reduced PC xenograft tumor burden (P < 0.05) and the incidence of metastasis by affecting key stemness markers, as confirmed by co-localization studies. Moreover, the drug combination significantly decreases the growth of various PC patient-derived organoids (P < 0.001). We found that SOX9 is significantly overexpressed in high-grade PC tumors (P < 0.05) and in chemotherapy-treated patients compared to chemo-naïve patients (P < 0.05). These results were further validated using publicly available datasets. Moreover, afatinib alone or in combination with gemcitabine decreased stemness and tumorspheres by reducing phosphorylation of EGFR family proteins, ERK, FAK, and CSC markers. Mechanistically, afatinib treatment decreased CSC markers by downregulating SOX9 via FOXA2. Indeed, EGFR and FOXA2 depletion reduced SOX9 expression in PCSCs. Taken together, pan-EGFR inhibition by afatinib impedes PCSCs growth and metastasis via the EGFR/ERK/FOXA2/SOX9 axis. This novel mechanism of pan-EGFR inhibitor and its ability to eradicate CSC may serve as a tailor-made approach to enhance chemotherapeutic benefits in other cancer types.


Assuntos
Fator 3-beta Nuclear de Hepatócito/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Fatores de Transcrição SOX9/antagonistas & inibidores , Afatinib/uso terapêutico , Animais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Fator 3-beta Nuclear de Hepatócito/fisiologia , Humanos , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Fatores de Transcrição SOX9/fisiologia , Gencitabina
7.
Chemosphere ; 238: 124689, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524624

RESUMO

Pharmaceutical effluents released from industries are accountable to deteriorate the aquatic and soil environment through indirect toxic effects. Microbes are adequately been used to biodegrade pharmaceutical industry wastewater and present study was envisaged to determine biodegradation of pharmaceutical effluent by Micrococcus yunnanensis. The strain showed 42.82% COD (Chemical oxygen demand) reduction before optimization. After applying Taguchi's L8 array as an optimization technique, the biodegradation rate was enhanced by 82.95% at optimum conditions (dextrose- 0.15%, peptone 0.1%, inoculum size 4% (wv-1), rpm 200, pH 8 at 25 °C) within 6 h. The confirmation of pharmaceuticals degradation was done by 1H NMR (Nuclear magnetic resonance) studies followed by elucidation of transformation pathways of probable drugs in the effluent through Q-Tof-MS (Quadrupole Time of Flight- Mass Spectrometry). The cytotoxicity evaluation of treated and untreated wastewater was analyzed on Human Embryonic Kidney (HEK 293) cells using Alamar Blue assay, which showed significant variance.


Assuntos
Biodegradação Ambiental , Resíduos Industriais/análise , Micrococcus/metabolismo , Preparações Farmacêuticas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Linhagem Celular , Indústria Farmacêutica , Células HEK293 , Humanos
8.
Ecotoxicol Environ Saf ; 180: 430-438, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31112842

RESUMO

The potential of Dunaliella salina isolated from Sambhar Salt Lake (Rajasthan, India) for biosorption of hexavalent chromium Cr(VI) in aqueous solution has been examined under optimized culture conditions. The influence of various process parameters, such as pH (6-11), incubation time (48-120 h), metal concentration (5-25 mgL-1), inoculum dose (2-10% vv-1), and their combination effects during Cr(VI) sorbtion were analyzed by means of Response Surface Methodology (RSM) based on a 3-level Box-Behnken experiment design. Microalgae showed highest chromium biosorption with 66.4% efficiency at optimum pH (8.6) and 10% (vv-1) inoculum size within 120 h. The experimental data obtained were analyzed by analysis of variance (ANOVA) along with lower value of coefficient of variation (34%), indicated the well fitness of quadratic equation as proposed by response surface model. Involvement of the surface morphology of the microalgae biomass and elemental distribution was studied through Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopic (EDS), Fourier-transform infrared spectroscopy (FTIR) and X-ray Diffraction (XRD) analysis. The findings unequivocally corroborates that the novel microalgae inherits immense potential in alleviating the levels of toxic heavy metal, such as Cr(VI) from the hydrosphere at wide range of pH and metal concentrations. The present study provides a workable solution for bioremediation of hazardous heavy metals, in general, and Cr(VI) in specific from the industrial wastes like tannery effluents.


Assuntos
Clorófitas/crescimento & desenvolvimento , Cromo/análise , Lagos/química , Poluentes Químicos da Água/análise , Adsorção , Biodegradação Ambiental , Clorófitas/química , Concentração de Íons de Hidrogênio , Índia , Resíduos Industriais/análise , Modelos Teóricos
9.
J Environ Manage ; 239: 124-136, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897478

RESUMO

Pesticides currently play a significant role in enhancing agricultural production and offer economic assistance to our farmers. However, their indiscriminate and injudicious application has caused environmental problems and public health concerns. Chlorpyrifos, a pesticide of organophosphate category is used globally as an insecticide, acaricide, and termiticide in households, public health, and agriculture against pests of a wide range. The extensive application of chlorpyrifos has caused contamination of various ecosystems like soil, sediments, water, air and also leads to the disruption of biogeochemical cycles. Moreover, chlorpyrifos residues have been detected in sediments, soil, water, vegetables, foodstuff and even in human fluids. It has been confirmed that exposure to chlorpyrifos has created health complications due to the inhibition of choline esterase enzyme, which leads to neurotoxicity, immunological and psychological effects in humans plus to the natural ecosystem. Due to the higher toxicity of chlorpyrifos, research is conducted globally to design and develop effective and efficient approaches for the elimination of chlorpyrifos and its associated compounds from environmental settings. At present different techniques are available for detoxification of such pesticides, but the microbial degradation of chlorpyrifos especially by bacteria has proven to be highly efficient, economical and environmental friendly. Thus, this paper aims to provide an outline of research events on this issue and summarize the evidences of chlorpyrifos pollution, discuss the analytical summary of latest research results on bacterial degradation of chlorpyrifos and possible degradation pathways along with effects on its degradation by different environmental parameters.


Assuntos
Clorpirifos , Praguicidas , Bactérias , Biodegradação Ambiental , Ecossistema , Humanos
10.
ISME J ; 13(6): 1497-1505, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742059

RESUMO

Seven bacterial strains isolated from a glyphosate-exposed orange plantation site were exposed to 1 mM N-(phosphonomethyl)glycine supplied as a phosphorus source. While some exhibited good biodegradation profiles, the strain 6 P, identified as Bacillus cereus, was the only strain capable of releasing inorganic phosphate to the culture supernatant, while accumulating polyphosphate intracellularly along the experimentation time. The composition and purity of the intracellular polyphosphate accumulated by the strain 6 P were confirmed by FTIR analysis. To date, the biological conversion of glyphosate into polyphosphate has not been reported. However, given the importance of this biopolymer in the survival of microorganisms, it can be expected that this process could represent an important ecological advantage for the adaptation of this strain to an ecological niche exposed to this herbicide. The polyphosphate production yield was calculated as 4 mg l-1, while the glyphosate biodegradation kinetic constant was calculated on 0.003 h-1 using the modified Hockey-Stick first-order kinetic model, with a half-life of 279 h. Our results suggest that B. cereus 6 P is a potential candidate for the generation of an innovative biotechnological process to produce polyphosphate through the biodegradation of the herbicide glyphosate.


Assuntos
Bacillus cereus/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Biodegradação Ambiental , Glicina/química , Glicina/metabolismo , Herbicidas/química , Cinética , Polifosfatos/química , Polifosfatos/metabolismo , Microbiologia do Solo , Glifosato
11.
Semin Cancer Biol ; 54: 63-71, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29199014

RESUMO

The Ras family of GTPases is involved in cell proliferation, cell survival, and angiogenesis. It is upregulated in several cancers, including pancreatic cancer (PC) and leads to uncontrolled growth and aggressiveness. PC is well known to be a lethal disease with poor prognosis, plagued by limited therapeutic modalities. MicroRNAs (miRNAs), which are short non-coding RNA molecules, have recently emerged as regulators of signaling networks and have shown potential to target pathway components for therapeutic use in several malignancies. K-Ras mutations are widespread in PC cases (90%), with mutations detectable as early as pancreatic intraepithelial neoplasias and in later metastatic stages alike; therefore, these mutations in K-Ras are obvious drivers and potential targets for PC therapy. Several K-Ras targeting miRNAs have lately been discovered, and many of them have shown promise in combating pancreatic tumor growth in vitro and in mouse models. However, the field of miRNA therapy is still in its infancy, and miRNA mimics or anti-miRNA oligonucleotides that target Ras pathway have thus far not been evaluated in PC patients. In this review, we summarize the role of several miRNAs that regulate oncogenic K-Ras signaling in PC, with their prospective roles as therapeutic agents for targeting K-Ras pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , Animais , Epistasia Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
BMC Cancer ; 18(1): 1157, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466404

RESUMO

BACKGROUND: Glycosylation plays a critical role in the aggressiveness of pancreatic cancer (PC). Emerging evidences indicate significant involvement of cancer stem cells (CSCs) in PC aggressiveness. However, the importance of glycosylation in pancreatic cancer stem cells (PCSCs) is yet to be addressed. Hence, we evaluated the potential role of glycosylation in maintenance of stemness of PCSCs. METHODS: Effect of glycosylation specific inhibitors on growth and PCSCs of PC cells was assessed by MTT assay and Side Population (SP) analysis. Isolated PCSCs/SP were characterized using molecular and functional assays. Expression of tumor-associated carbohydrate antigens (TACAs) was analyzed in PCSCs by western blotting. Effect of tunicamycin on PCSCs was analyzed by tumorsphere, clonogenicity, migration assay and immunoblotting for CSCs markers. The differential expression of glycogenes in PCSCs compared to non-CSCs were determined by RT-qPCR, immunoblotting and immunofluorescence. Co-expression of GALNT3 and B3GNT3 with CD44v6 was assessed in progression stages of KrasG12D; Pdx-1-Cre (KC) and KrasG12D; p53R172H; Pdx-1-Cre (KPC) tumors by immunofluorescence. Transient and CRISPR/Cas9 silencing of GALNT3 and B3GNT3 was performed to examine their effect on CSCs maintenance. RESULTS: Inhibition of glycosylation decreased growth and CSCs/SP in PC cells. PCSCs overexpressed CSC markers (CD44v6, ESA, SOX2, SOX9 and ABCG2), exhibited global expressional variation of TACAs and showed higher self-renewal potential. Specifically, N-glycosylation inhibition, significantly decreased tumorsphere formation, migration, and clonogenicity of PCSCs, as well as hypo-glycosylated CD44v6 and ESA. Of note, glycosyltransferases (GFs), GALNT3 and B3GNT3, were significantly overexpressed in PCSCs and co-expressed with CD44v6 at advanced PDAC stages in KC and KPC tumors. Further, GALNT3 and B3GNT3 knockdown led to a decrease in the expression of cell surface markers (CD44v6 and ESA) and self-renewal markers (SOX2 and OCT3/4) in PCSCs. Interestingly, CD44v6 was modified with sialyl Lewis a in PCSCs. Finally, CRISPR/Cas9-mediated GALNT3 KO significantly decreased self-renewal, clonogenicity, and migratory capacity in PCSCs. CONCLUSIONS: Taken together, for the first time, our study showed the importance of glycosylation in mediating growth, stemness, and maintenance of PCSCs. These results indicate that elevated GALNT3 and B3GNT3 expression in PCSCs regulate stemness through modulating CSC markers.


Assuntos
Autorrenovação Celular/genética , N-Acetilgalactosaminiltransferases/genética , N-Acetilglucosaminiltransferases/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosilação , Humanos , Receptores de Hialuronatos/metabolismo , Modelos Biológicos , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Estadiamento de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Polipeptídeo N-Acetilgalactosaminiltransferase
13.
Stem Cells ; 36(9): 1329-1340, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29770526

RESUMO

Three-dimensional (3D) cultures use the property of some cells to self-organize in matrices and generate structures that can be programmed to represent an organ or a pathology. Organoid cultures are the 3D cultivation of source tissue (ranging from cells to tissue fragments) in a support matrix and specialized media that nearly resembles the physiological environment. Depending on the source tissue, growth factors, and inhibitors provided, organoids can be programmed to recapitulate the biology of a system and progression of pathology. Organoids are genetically stable, and genetically amenable, making them very suitable tools to study tissue homeostasis and cancer. In this Review, we focus on providing recent technical advances from published literature to efficiently use organoids as a tool for disease modeling and therapeutics. Also, we discuss stem cell biology principles used to generate multiple organoids and their characteristics, with a brief description of methodology. A major theme of this review is to expand organoid applications to the study disease progression and drug response in different cancers. We also discuss shortcomings, limitations, and advantages of developed 3D cultures, with the rationale behind the methodology. Stem Cells 2018;36:1329-1340.


Assuntos
Técnicas de Cultura de Células/métodos , Imageamento Tridimensional/métodos , Modelos Biológicos , Organoides/metabolismo , Humanos
14.
Cancer Biol Ther ; 19(4): 316-327, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29303405

RESUMO

The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Neoplasias Pleurais/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico
15.
Environ Sci Pollut Res Int ; 23(10): 9480-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26916265

RESUMO

The present study on organophosphate deals with the reports on pollution and toxicity cases throughout India. The use of pesticides was introduced in India during the 1960s which are now being used on a large scale and represents the common feature of Indian agriculture. Use of organophosphates as a pesticide came as an alternative to chlorinated hydrocarbons due to their easy degradability. Although these xenobiotics degrade under natural condition, their residues have been detected in soil, sediments, and water due to their non-regulated usage practice. The over-reliance on pesticides has not only threatened our environment but contaminations of organophosphate residues have been also detected in certain agricultural products like tea, sugars, vegetables, and fruits throughout India. This paper highlights many of the cases where different organophosphates have been detected exceeding their respective MRL values. Some organophosphates detected are so hazardous that even WHO has listed them in class 1a and class 1b hazardous group. Presence of their residues in blood, milk, honey, and tissues of human and animals revealed their excessive use and bioaccumulating capabilities. Their intentional or unintentional uptake is causing thousands of deaths and severity each year. Most of the toxicity cases presented here are due to their uptake during a suicidal attempt. This shows how easily these harmful substances are available in the market.


Assuntos
Organofosfatos/análise , Praguicidas/análise , Animais , Produtos Agrícolas/química , Humanos , Índia , Solo , Poluentes do Solo/análise
16.
Environ Sci Pollut Res Int ; 20(2): 1070-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22565985

RESUMO

The native and physico-chemically treated fungal biomasses of Neurospora intermedia were used for adsorption of colored pollutants from distillery spent wash in batch systems. Experiments were conducted at varying color concentrations of the effluent (1,000-6,500 CU). The kinetics of effect of initial sorbate concentration, dose of biosorbent, temperature, and pH on adsorption were studied. Physical and chemical pretreatments of biomass resulted in an increase or decrease in color removal capacity. This effect was further studied by FTIR analysis of the dried fungal mycelium. The maximum color uptake on all the tested fungal biomass preparations was observed at pH 3.0 and temperature 30 °C, within first 4 h. The Langmuir and Freundlich adsorption models were used for the mathematical description of the biosorption equilibrium and the data showed an optimal fit to these isotherms. Kinetic parameters indicated the dominance of Lagergren pseudo first-order kinetic model for adsorption. On the basis of maximum adsorption capacity, the color removal capacity by fungal preparations was in the order of native > heat > acid, base.


Assuntos
Resíduos Industriais , Neurospora/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Adsorção , Biomassa , Cor , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
17.
Bioresour Technol ; 101(12): 4296-305, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20156685

RESUMO

The ability of Emericella nidulans var. lata, Neurospora intermedia and Bacillus sp. to treat distillery spent wash in a three stage bioreactor was investigated. Process parameters were optimized in shake flask cultures with the individual strains before treatment of the effluent in a 15-l bioreactor. Treatment was first carried out by the fungi followed by bacteria. The treated effluent showed significant reduction in color (82%) and COD (93%) after 30 h. Metabolites formed after degradation of complex polymers in distillery effluent were assayed by gas chromatography-mass spectroscopy and included furan, simple acid types and organic compounds. Denaturing gradient gel electrophoresis of 16S rDNA and 18S rDNA sequences amplified from DNA isolated from the reactor communities indicated the presence of other organisms besides those introduced initially. The microbial communities were able to carry out bioremediation of distillery effluent and produce discharge that conforms to safety standards.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Destilação , Fungos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Bactérias/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Carbono/farmacologia , Cor , Eletroforese em Gel de Ágar , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio/farmacologia , Oxigênio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA