Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2951, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618731

RESUMO

The antibody response magnitude and kinetics may impact clinical severity, serological diagnosis and long-term protection of COVID-19, which may play a role in why children experience lower morbidity. We therefore tested samples from 122 children in Hong Kong with symptomatic (n = 78) and asymptomatic (n = 44) SARS-CoV-2 infections up to 200 days post infection, relative to 71 infected adults (symptomatic n = 61, and asymptomatic n = 10), and negative controls (n = 48). We assessed serum IgG antibodies to a 14-wide antigen panel of structural and accessory proteins by Luciferase Immuno-Precipitation System (LIPS) assay and circulating cytokines. Infected children have lower levels of Spike, Membrane, ORF3a, ORF7a, ORF7b antibodies, comparable ORF8 and elevated E-specific antibodies than adults. Combination of two unique antibody targets, ORF3d and ORF8, can accurately discriminate SARS-CoV-2 infection in children. Principal component analysis reveals distinct pediatric serological signatures, and the highest contribution to variance from adults are antibody responses to non-structural proteins ORF3d, NSP1, ORF3a and ORF8. From a diverse panel of cytokines that can modulate immune priming and relative inflammation, IL-8, MCP-1 and IL-6 correlate with the magnitude of pediatric antibody specificity and severity. Antibodies to SARS-CoV-2 internal proteins may become an important sero surveillance tool of infection with the roll-out of vaccines in the pediatric population.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Especificidade de Anticorpos , Criança , Citocinas , Humanos , Imunoglobulina G
2.
medRxiv ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33655259

RESUMO

Background: Children are less clinically affected by SARS-CoV-2 infection than adults with the majority of cases being mild or asymptomatic and the differences in infection outcomes are poorly understood. The kinetics, magnitude and landscape of the antibody response may impact the clinical severity and serological diagnosis of COVID-19. Thus, a comprehensive investigation of the antibody landscape in children and adults is needed. Methods: We tested 254 plasma from 122 children with symptomatic and asymptomatic SARS-CoV-2 infections in Hong Kong up to 206 days post symptom onset, including 146 longitudinal samples from 58 children. Adult COVID-19 patients and pre-pandemic controls were included for comparison. We assessed antibodies to a 14-wide panel of SARS-CoV-2 structural and accessory proteins by Luciferase Immunoprecipitation System (LIPS). Findings: Children have lower levels of Spike and Nucleocapsid antibodies than adults, and their cumulative humoral response is more expanded to accessory proteins (NSP1 and Open Reading Frames (ORFs)). Sensitive serology using the three N, ORF3b, ORF8 antibodies can discriminate COVID-19 in children. Principal component analysis revealed distinct serological signatures in children and the highest contribution to variance were responses to non-structural proteins ORF3b, NSP1, ORF7a and ORF8. Longitudinal sampling revealed maintenance or increase of antibodies for at least 6 months, except for ORF7b antibodies which showed decline. It was interesting to note that children have higher antibody responses towards known IFN antagonists: ORF3b, ORF6 and ORF7a. The diversified SARS-CoV-2 antibody response in children may be an important factor in driving control of SARS-CoV-2 infection.

3.
J Math Biol ; 68(1-2): 235-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23239007

RESUMO

The aim of this paper is to provide new models of cell electropermeabilization involving only a few parameters. A static and a dynamical model, which are based on the description of the electric potential in a biological cell, are derived. Existence and uniqueness results are provided for each differential system, and an accurate numerical method to compute the solution is described. We then present numerical simulations that corroborate the experimental observations, providing the consistency of the modeling. We emphasize that our new models involve very few parameters, compared with the most achieved models of Neu and Krassowska (Phys Rev E 53(3):3471-3482, 1999) and DeBruin and Krassowska (Biophys J 77:1225-1233, 1999), but they provide the same qualitative results. Thus, these models will facilitate drastically the forthcoming inverse problem solving, which will consist in fitting them with the experiments.


Assuntos
Biologia Celular , Membrana Celular/fisiologia , Potenciais da Membrana/fisiologia , Modelos Biológicos , Simulação por Computador , Eletroporação/métodos , Análise Numérica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA