Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 3(1): e0000433, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261580

RESUMO

The remarkable performance of ChatGPT, launched in November 2022, has significantly impacted the field of natural language processing, inspiring the application of large language models as supportive tools in clinical practice and research worldwide. Although GPT-3.5 recently scored high on the United States Medical Licensing Examination, its performance on medical licensing examinations of other nations, especially non-English speaking nations, has not been sufficiently evaluated. This study assessed GPT's performance on the National Medical Licensing Examination (NMLE) in Japan and compared it with the actual minimal passing rate for this exam. In particular, the performances of both the GPT-3.5 and GPT-4 models were considered for the comparative analysis. We initially used the GPT models and several prompts for 290 questions without image data from the 116th NMLE (held in February 2022 in Japan) to maximize the performance for delivering correct answers and explanations of the questions. Thereafter, we tested the performance of the best GPT model (GPT-4) with optimized prompts on a dataset of 262 questions without images from the latest 117th NMLE (held in February 2023). The best model with the optimized prompts scored 82.7% for the essential questions and 77.2% for the basic and clinical questions, both of which sufficed the minimum passing scoring rates of 80.0% and 74.6%, respectively. After an exploratory analysis of 56 incorrect answers from the model, we identified the three major factors contributing to the generation of the incorrect answers-insufficient medical knowledge, information on Japan-specific medical system and guidelines, and mathematical errors. In conclusion, GPT-4 with our optimized prompts achieved a minimum passing scoring rate in the latest 117th NMLE in Japan. Beyond its original design of answering examination questions for humans, these artificial intelligence (AI) models can serve as one of the best "sidekicks" for solving problems and addressing the unmet needs in the medical and healthcare fields.

2.
Cell Rep ; 42(3): 112149, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821440

RESUMO

Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD. Stimulating 5-HT neurons of the dorsal raphe nucleus (DRN) or neuronal ensembles in the dorsal dentate gyrus (dDG) associated with positive memories reverses the stress-induced behavioral abnormalities. Despite this phenotypic similarity, their causal relationship is unclear. This study revealed that the DRN 5-HT neurons activate dDG neurons; surprisingly, this activation was specifically observed in positive memory ensembles rather than neutral or negative ensembles. Furthermore, we revealed that dopaminergic signaling induced by activation of DRN 5-HT neurons projecting to the ventral tegmental area mediates an increase in active coping behavior and positive dDG ensemble reactivation. Our study identifies a role of DRN 5-HT neurons as specific reactivators of positive memories and provides insights into how serotonin elicits antidepressive effects.


Assuntos
Transtorno Depressivo Maior , Núcleo Dorsal da Rafe , Humanos , Neurônios Serotoninérgicos , Serotonina/farmacologia , Giro Denteado
3.
Nat Commun ; 13(1): 7708, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550097

RESUMO

Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.


Assuntos
Núcleo Interpeduncular , Neurônios Serotoninérgicos , Camundongos , Animais , Serotonina/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Receptores de Serotonina
4.
Artigo em Inglês | MEDLINE | ID: mdl-33638630

RESUMO

BACKGROUND: Cyclosporin A (CSA) and tacrolimus (TAC) suppress T-cell activation and subsequent proliferation by inhibiting calcineurin. Though they have the same target, CSA and TAC have quite different molecular structures, indicating quantitative and/or qualitative differences in their effects. OBJECTIVE: CD28 is a costimulatory molecule that enhances T-cell activation. It has also been shown to attenuate calcineurin inhibitors. In this study, we compared the CD28-mediated resistance of CD4+ T cells to those calcineurin inhibitors and tried to predict CD28's impact on infectious diseases. METHODS: CD4+ T-cell proliferation was induced with anti-CD3 mAb in the presence or absence of anti-CD28 mAb in vitro. CSA or TAC was added at various concentrations, and the half-maximal inhibitory concentration on CD4+ T-cell proliferation was determined. Effects of lipopolysaccharide (LPS) on dendritic cells (DCs) and CD4+ T-cell proliferation were also evaluated in vitro. RESULTS: Anti-CD28 mAb conferred CD4+ T cells with resistance to both CSA and TAC, and CD28's effect on the latter was approximately twice that on the former. LPS induced expression of CD28 ligands CD80/86 on DCs. The addition of LPS to culture containing DCs seemed to make CD4+ T cells slightly resistant to TAC but not to CSA. However, its effect on the former was very weak under our experimental conditions. CONCLUSIONS: CD28 attenuated TAC more strongly than CSA. Although LPS did not demonstrate strong enough resistance in our in vitro model, TAC might maintain a better antibacterial immune response than CSA in clinical use.

5.
J Phys Condens Matter ; 32(19): 195001, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31945756

RESUMO

We analyzed the electronic and structural properties of an α-Keggin type molybdenum-based polyoxometalate (POM) [[PMo12O40]3-] and its capacity for reduction reaction via H adsorption using ab initio calculations based on density functional theory (DFT). We also determined the change in the electronic properties brought about by vanadium substitutional doping, and its effect on the capacity of POM to adsorb H atom. We found that the optimal substitutional doping of four vanadium per one unit of POM is adequate to maintain its structural stability. Furthermore, increasing dopant concentration changes charge redistribution such that it induces charge transfer to an initially less active sites for H adsorption on pristine POM. This may increase the possibility of creating active sites from an initially inert H adsorption sites and allows for a higher density of H adsorption. This phenomenon could be relevant for chemical reactions that initially requires high number of pre-adsorbed H atoms.

6.
Xenobiotica ; 50(7): 769-775, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31766940

RESUMO

Pharmacokinetics and metabolism of recently launched antidyslipidemic drug pemafibrate ((2R)-2-[3-({1,3-benzoxazol-2-yl[3-(4-methoxyphenoxy)propyl]amino}methyl)phenoxy]butanoic acid) was investigated in chimeric mice with humanized liver in the present study.The plasma unbound fractions of [14C]pemafibrate in mice (0.0046-0.0048) were higher than those in monkeys and humans (0.0015-0.0022).In chimeric mice with humanized liver intravenously treated with pemafibrate at 1.0 mg/kg body weight, the pharmacokinetic parameters (CLtotal, Vss and AUC0-inf) of unbound pemafibrate in chimeric mice with humanized liver were more similar to those reported in monkeys and humans than those in control mice.High concentrations of N-dealkylated form (M4) and benzoxazole 6-hydroxylated form (M6) of pemafibrate in plasma were observed as the main circulating metabolites in chimeric mice with humanized liver treated with pemafibrate. Moreover, the concentrations of other specified metabolites of pemafibrate were much higher in chimeric mice with humanized liver than in control mice.These results suggest that there are species differences in the pharmacokinetics of pemafibrate in vivo between mice tested and humans reported. Moreover, chimeric mice with humanized liver seem to be a beneficial animal model for further studies to predict the circulating human metabolites of pemafibrate and their pharmacokinetics.


Assuntos
Benzoxazóis/metabolismo , Butiratos/metabolismo , Animais , Quimera , Humanos , Fígado/metabolismo , Camundongos
7.
Biopharm Drug Dispos ; 40(1): 12-17, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30517973

RESUMO

The metabolic profiles and pharmacokinetics of pemafibrate, a novel selective peroxisome proliferator activated receptor-alpha modulator currently launched as an antidyslipidemic drug, were investigated in vitro using hepatocytes from rats, monkeys and humans and in vivo in rats and monkeys. Hepatocytes from rats, monkeys and humans all biotransformed pemafibrate to its demethylated form (M1). The bioavailabilities of pemafibrate in Sprague-Dawley rats and cynomolgus monkeys were 15% and 87%, respectively, after a single oral administration of pemafibrate (1 mg/kg). In rat plasma, unmetabolized pemafibrate was the major form, accounting for 29% of the area under the curve (AUC) of total radioactivity. In monkey plasma, in contrast, the major circulating metabolites were M2/3 (dearylated/dicarboxylic acid forms, 15%), M4 (N-dealkylated form, 21%) and M5 (benzylic oxidative form, 9%), but pemafibrate was the notable minor form (3%). These results, in combination with the reported findings in humans, suggest that the metabolite profile of pemafibrate in plasma was different for rats and monkeys, and that monkeys could be a suitable animal model for further pharmacokinetic studies of pemafibrate in humans.


Assuntos
Benzoxazóis/farmacocinética , Butiratos/farmacocinética , PPAR alfa/metabolismo , Animais , Feminino , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Ratos Sprague-Dawley
8.
Neuropsychopharmacology ; 44(4): 721-732, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30377380

RESUMO

Major depression and anxiety disorders are a social and economic burden worldwide. Serotonergic signaling has been implicated in the pathophysiology of these disorders and thus has been a crucial target for pharmacotherapy. However, the precise mechanisms underlying these disorders are still unclear. Here, we used species-optimized lentiviral vectors that were capable of efficient and specific transduction of serotonergic neurons in mice and rats for elucidation of serotonergic roles in anxiety-like behaviors and active coping behavior in both species. Immunohistochemical analyses revealed that lentiviral vectors with an upstream sequence of tryptophan hydroxylase 2 gene efficiently transduced serotonergic neurons with a specificity of approximately 95% in both mice and rats. Electrophysiological recordings showed that these lentiviral vectors induced sufficient expression of optogenetic tools for precise control of serotonergic neurons. Using these vectors, we demonstrate that acute activation of serotonergic neurons in the dorsal raphe nucleus increases active coping with inescapable stress in rats and mice in a time-locked manner, and that acute inhibition of these neurons increases anxiety-like behaviors specifically in rats. These findings further our understanding of the pathophysiological role of dorsal raphe serotonergic neurons in different species and the role of these neurons as therapeutic targets in major depression and anxiety disorders.


Assuntos
Adaptação Psicológica/fisiologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Vetores Genéticos , Lentivirus , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Ratos , Ratos Wistar
9.
J Med Chem ; 61(17): 7767-7784, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30091920

RESUMO

The glucocorticoid receptor (GR) has been linked to therapy resistance across a wide range of cancer types. Preclinical data suggest that antagonists of this nuclear receptor may enhance the activity of anticancer therapy. The first-generation GR antagonist mifepristone is currently undergoing clinical evaluation in various oncology settings. Structure-based modification of mifepristone led to the discovery of ORIC-101 (28), a highly potent steroidal GR antagonist with reduced androgen receptor (AR) agonistic activity amenable for dosing in androgen receptor positive tumors and with improved CYP2C8 and CYP2C9 inhibition profile to minimize drug-drug interaction potential. Unlike mifepristone, 28 could be codosed with chemotherapeutic agents readily metabolized by CYP2C8 such as paclitaxel. Furthermore, 28 demonstrated in vivo antitumor activity by enhancing response to chemotherapy in the GR+ OVCAR5 ovarian cancer xenograft model. Clinical evaluation of safety and therapeutic potential of 28 is underway.


Assuntos
Descoberta de Drogas , Antagonistas de Hormônios/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Feminino , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacocinética , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ratos , Suínos , Porco Miniatura , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Pharmacol Sci ; 137(3): 313-316, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29907377

RESUMO

Neurotropin (NTP) is a Japanese analgesic agent for treating neuropathic pain; however, its method of action remains unclear. This study examined the effects of NTP on the activity of small dorsal root ganglion (DRG) neurons using whole-cell patch clamp recordings. After 3 days of treatment, NTP decreased current injection-induced firing activity of cultured DRG neurons by raising the current threshold for action potential generation. Additionally, NTP increased the sustained component of voltage-gated potassium (Kv) channel currents without affecting other K+ currents. These results suggest that NTP inhibits the firing activity of DRG neurons through augmentation of sustained Kv current.


Assuntos
Analgésicos/farmacologia , Gânglios Espinais/citologia , Neurônios/metabolismo , Polissacarídeos/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Masculino , Técnicas de Patch-Clamp , Ratos Wistar , Fatores de Tempo
11.
Int J Neuropsychopharmacol ; 21(3): 305-310, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370396

RESUMO

Background: Ketamine rapidly elicits antidepressive effects in humans and mice in which serotonergic activity is involved. Although α4ß2 nicotinic acetylcholine receptor (α4ß2 nAChR) in the dorsal raphe nucleus plays a key role in the ketamine-induced prefrontal serotonin release, the source of cholinergic afferents, and its role is unclear. Methods: Prefrontal serotonin levels after ketamine injection were measured by microdialysis in rats. Electrolytic lesion of pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus was made with constant direct current. Results: Bilateral lesion of the pedunculopontine tegmental nucleus, but not laterodorsal tegmental nucleus, attenuated prefrontal serotonin release induced by systemic ketamine. Intra-pedunculopontine tegmental nucleus, but not intra-laterodorsal tegmental nucleus ketamine perfusion, increased prefrontal serotonin release. This increase was attenuated by intra-dorsal raphe nucleus injection of dihydro-ß-erythroidine, an α4ß2 nAChR antagonist, or NBQX, an AMPA receptor antagonist. Conclusions: These results suggest the ketamine-induced serotonin release in medial prefrontal cortex is mediated by cholinergic neurons projecting from pedunculopontine tegmental nucleus to dorsal raphe nucleus via α4ß2 nAChRs.


Assuntos
Antidepressivos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Ketamina/farmacologia , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Serotonina/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Masculino , Neurotransmissores/farmacologia , Núcleo Tegmental Pedunculopontino/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores Nicotínicos/metabolismo
12.
Sci Rep ; 7(1): 13609, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051549

RESUMO

Spontaneous activity of serotonergic neurons of the dorsal raphe nucleus (DRN) regulates mood and motivational state. Potentiation of serotonergic function is one of the therapeutic strategies for treatment of various psychiatric disorders, such as major depression, panic disorder and obsessive-compulsive disorder. However, the control mechanisms of the serotonergic firing activity are still unknown. In this study, we examined the control mechanisms for serotonergic spontaneous activity and effects of chronic antidepressant administration on these mechanisms by using modified ex vivo electrophysiological recording methods. Serotonergic neurons remained firing even in the absence of glutamatergic and GABAergic ionotropic inputs, while blockade of L-type voltage dependent Ca2+ channels (VDCCs) in serotonergic neurons decreased spontaneous firing activity. L-type VDCCs in serotonergic neurons received gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition, which maintained serotonergic slow spontaneous firing activity. Chronic administration of an antidepressant, citalopram, disinhibited the serotonergic spontaneous firing activity by weakening the GABAB receptor-mediated inhibition of L-type VDCCs in serotonergic neurons. Our results provide a new mechanism underlying the spontaneous serotonergic activity and new insights into the mechanism of action of antidepressants.


Assuntos
Antidepressivos/farmacologia , Canais de Cálcio Tipo L/metabolismo , Receptores de GABA-B/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/química , Citalopram/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de GABA-B/química , Neurônios Serotoninérgicos/fisiologia
13.
Chemistry ; 23(5): 1007-1012, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-27779798

RESUMO

Thiolate-bridged diruthenium complexes bearing pendent ethers have been found to work as effective catalysts toward the oxidation of molecular dihydrogen into protons and electrons in water. The pendent ether moiety in the complex plays an important role to facilitate the proton transfer between the metal center and the external proton acceptor.

14.
J Toxicol Sci ; 41(6): 813-816, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853110

RESUMO

N-[[1-(5-fluoropentyl)-1H-indazol-3-yl]carbonyl]-3-methyl-D-valine methyl ester (5F-ADB) is one of the most potent synthetic cannabinoids and elicits severe psychotic symptoms in humans, sometimes causing death. To investigate the neuronal mechanisms underlying its toxicity, we examined the effects of 5F-ADB on midbrain dopaminergic and serotonergic systems, which modulate various basic brain functions such as those in reward-related behavior. 5F-ADB-induced changes in spontaneous firing activity of dopaminergic and serotonergic neurons were recorded by ex vivo electrophysiological techniques. In dopaminergic neurons, 5F-ADB (1 µM) significantly increased the spontaneous firing rate, while 5F-ADB failed to activate dopaminergic neurons in the presence of the CB1 antagonist AM251 (1 µM). However, the same concentration of 5F-ADB did not affect serotonergic-neuron activity. These results suggest that 5F-ADB activates local CB1 receptors and potentiates midbrain dopaminergic systems with no direct effects on midbrain serotonergic systems.


Assuntos
Agonistas de Receptores de Canabinoides/toxicidade , Canabinoides/toxicidade , Drogas Desenhadas/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Potenciais de Ação , Animais , Agonistas de Receptores de Canabinoides/síntese química , Canabinoides/síntese química , Drogas Desenhadas/síntese química , Neurônios Dopaminérgicos/metabolismo , Técnicas In Vitro , Masculino , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Neurônios Serotoninérgicos/metabolismo
15.
J Ocul Pharmacol Ther ; 32(7): 405-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27463221

RESUMO

PURPOSE: We evaluated the ocular pharmacokinetics of ripasudil (K-115), a selective Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor, following topical administration to rabbits. METHODS: We determined the ocular distribution of [(14)C]ripasudil by whole-head autoradiography and the radioactivity of each ocular tissue after single and multiple instillation of [(14)C]ripasudil to pigmented rabbits. We also measured the aqueous humor concentrations after concomitant instillation of ripasudil and a combination agent (0.005% latanoprost and 0.5% timolol) to pigmented rabbits as well as the tear fluid concentrations after instillation into rabbits, dogs, and monkeys using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Membrane permeability was evaluated using an in vitro parallel artificial membrane permeability assay system and Ussing chamber with rabbit cornea and conjunctiva. RESULTS: [(14)C]Ripasudil was rapidly absorbed into the cornea and distributed throughout the eye after topical instillation. The melanin-containing ocular tissues, such as the iris-ciliary body and retina-choroid, showed much higher concentrations of radioactivity than the other nonpigmented tissues. Concomitant instillation showed minor effects on the aqueous humor concentrations of each compound in rabbits. Membrane permeability of ripasudil was higher than other glaucoma drugs in vitro and ex vivo. The aqueous humor concentrations of ripasudil in rabbits were higher than those in dogs and monkeys in the early period after instillation and associated with tear turnover rate. CONCLUSIONS: These results indicate favorable intraocular penetration characteristics of ripasudil following topical administration.


Assuntos
Olho/metabolismo , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacocinética , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Administração Tópica , Animais , Humor Aquoso/química , Cromatografia Líquida de Alta Pressão , Cães , Haplorrinos , Coelhos , Espectrometria de Massas em Tandem , Lágrimas/metabolismo
16.
J Am Chem Soc ; 138(2): 587-93, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26744765

RESUMO

A recent trend in homogeneous gold catalysis has been the development of oxidative transformations relying on Au(I)/Au(III) redox cycling. Typically, phosphine-supported Au(I) precatalysts are used in the presence of strong oxidants to presumably generate phosphine Au(III) intermediates. Herein, we disclose that such Au(III) complexes can undergo facile C(aryl)-P reductive elimination to afford phosphonium salts, which have been spectroscopically and crystallographically characterized. Mechanistic studies indicate that this process occurs from cationic species at temperatures as low as -20 °C but can be accelerated in the presence of nucleophiles, such as acetonitrile and phosphines, via a five-coordinate intermediate. Importantly, this study highlights that irreversible C(aryl)-P reductive elimination is a feasible decomposition or activation pathway for phosphine-supported Au(III) catalysts and should not be ignored in future reaction development.


Assuntos
Carbono/química , Ouro/química , Fósforo/química , Oxirredução
17.
Xenobiotica ; 46(7): 579-590, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26678038

RESUMO

1. We examined the metabolism of ripasudil (K-115), a selective and potent Rho-associated coiled coil-containing protein kinase (ROCK) inhibitor, by in vitro and in vivo studies. 2. First, we identified metabolites and metabolic enzymes involved in ripasudil metabolism. Species differences were observed in metabolic clearance and profiles of metabolites in liver S9 fraction and hepatocytes. In addition, ripasudil was metabolised in humans and monkey S9 without nicotinamide adenine dinucleotide phosphate (NADPH). Studies using specific inhibitors and human recombinant enzyme systems showed that M1 (main metabolite in humans) formation is mediated by aldehyde oxidase (AO). 3. Therefore, we developed ripasudil as an ophthalmic agent. First, we compared the pharmacokinetic profiles of ripasudil in humans and rats. The results indicated rapid disappearance of ripasudil from the circulation after instillation in humans and its level remained relatively high only in M1. In contrast, we found six metabolites from M1 to M6 in plasma after oral administration to rats. 4. Analysis of enzyme kinetics using S9 showed that the formation of M1 is the major metabolic pathway of ripasudil in humans even though CYP3A4/3A5 and CYP2C8/3A4/3A5 were associated with the formation of M2 and M4, respectively. In conclusion, AO causes differences in ripasudil metabolism between species.

18.
IEEE Trans Neural Syst Rehabil Eng ; 23(6): 964-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25350934

RESUMO

Neuromuscular electrical stimulation (NMES) has been shown to impart a number of health benefits and can be used to produce functional outcomes. However, one limitation of NMES is the onset of NMES-induced fatigue. Multi-channel asynchronous stimulation has been shown to reduce NMES-induced fatigue compared to conventional single-channel stimulation. However, in previous studies in man, the effect of stimulation frequency on the NMES-induced fatigue has not been examined for asynchronous stimulation. Low stimulation frequencies are known to reduce fatigue during conventional stimulation. Therefore, the aim of this study was to examine the fatigue characteristics of high- and low-frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation. Experiments were performed in both able-bodied and spinal cord injured populations. Low frequency asynchronous stimulation is found to have significant fatigue benefits over high frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation, motivating its use for rehabilitation and functional electrical stimulation (FES).


Assuntos
Estimulação Elétrica , Fadiga Muscular , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Torque , Adulto Jovem
19.
Chem Rec ; 14(6): 1024-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25130550

RESUMO

The unique, partially saturated, fluorinated five-membered heterocyclic compounds, trifluoromethylated dihydroazoles, and their derivatives, have emerged as a new class of heterocycles with remarkable biological activities in the 21st century. Despite their small molecular structures, a single sterically demanding tetrasubstituted trifluoromethylated stereogenic carbon center has prevented chemists from achieving the asymmetric synthesis of these compounds. In this account, we describe our recent progress in the catalytic asymmetric synthesis of a series of trifluoromethylated heterocycles, such as isoxazolines and pyrrolines having a stereogenic carbon center, based on organocatalysis. Our protocols have advantages in terms of employing inexpensive reagents and organocatalysts and they would be useful for industrial production.


Assuntos
Agroquímicos/química , Azóis/síntese química , Compostos Orgânicos/química , Catálise , Estereoisomerismo
20.
ChemistryOpen ; 3(1): 14-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24688889

RESUMO

Highly functionalized 5-trifluoromethyl-2-isoxazoline derivatives featuring a triflyl (SO2CF3) group at the 4-position were successfully synthesized via diastereoselective trifluoromethylation and halogenation of isoxazole triflones using the Ruppert- Prakash reagent. The trifluoromethylation is quite general in terms of the substrates including 3,5-diaryl isoxazole triflones and 3-aryl-5-styrylisoxazole triflones to provide products in high yields with excellent diastereoselectivities. The highly functionalized 5-trifluoromethyl-2-isoxazoline derivatives are expected to be a new class of antiparasiticides. Thus the triflyl group both activates isoxazoles and the 4-postion of CF3 adducts, and has a potential biological function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA