Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Pharm Sci ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950881

RESUMO

Although physical stability can be a critical issue during the development of amorphous solid dispersions (ASDs), there are no established protocols to predict/detect their physical stability. In this study, we have prepared fenofibrate ASDs using two representative manufacturing methods, hot-melt extrusion and spray-drying, to investigate their physical stability for one year. Intentionally unstable ASDs were designed to compare the detection power of each evaluation method, including X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dissolution study. Each method did not provide the same judgment results on physical stability in some cases because of their different evaluation principles and sensitivity, which has been well-comprehended only for one-component glass. This study revealed that the detection powers of each evaluation method significantly depended on the manufacturing methods. DSC was an effective method to detect a small amount of crystals for both types of ASDs in a quantitative manner. Although the sensitivity of XRPD was always lower compared to that of DSC, interpretation of the data was the easiest. SEM was very effective for observing the crystallization of the small amount of drug for hot-melt extruded products, as the drug crystal vividly appeared on the large grains. The dissolution performance of spray-dried products could change even without any indication of physical change including crystallization. The advantage/disadvantage and complemental roles of each evaluation method are discussed for deeper understanding on the physical stability data of ASDs.

2.
Nanoscale ; 16(28): 13230-13246, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38953604

RESUMO

Given the creation of materials based on nanoscale science, nanotechnology must be combined with other disciplines. This role is played by the new concept of nanoarchitectonics, the process of constructing functional materials from nanocomponents. Nanoarchitectonics may be highly compatible with applications in biological systems. Conversely, it would be meaningful to consider nanoarchitectonics research oriented toward biological applications with a focus on materials systems. Perhaps, hydrogels are promising as a model medium to realize nanoarchitectonics in biofunctional materials science. In this review, we will provide an overview of some of the defined targets, especially for tissue engineering. Specifically, we will discuss (i) hydrogel bio-inks for 3D bioprinting, (ii) dynamic hydrogels as an artificial extracellular matrix (ECM), and (iii) topographical hydrogels for tissue organization. Based on these backgrounds and conceptual evolution, the construction strategies and functions of bio-gel nanoarchitectonics in medical applications and tissue engineering will be discussed.


Assuntos
Bioimpressão , Matriz Extracelular , Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Humanos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animais , Materiais Biocompatíveis/química , Nanoestruturas/química , Impressão Tridimensional , Alicerces Teciduais/química , Nanotecnologia
3.
Mol Pharm ; 21(7): 3471-3484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38872243

RESUMO

Oligonucleotides are short nucleic acids that serve as one of the most promising classes of drug modality. However, attempts to establish a physicochemical evaluation platform of oligonucleotides for acquiring a comprehensive view of their properties have been limited. As the chemical stability and the efficacy as well as the solution properties at a high concentration should be related to their higher-order structure and intra-/intermolecular interactions, their detailed understanding enables effective formulation development. Here, the higher-order structure and the thermodynamic stability of the thrombin-binding aptamer (TBA) and four modified TBAs, which have similar sequences but were expected to have different higher-order structures, were evaluated using ultraviolet spectroscopy (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). Then, the relationship between the higher-order structure and the solution properties including solubility, viscosity, and stability was investigated. The impact of the higher-order structure on the antithrombin activity was also confirmed. The higher-order structure and intra-/intermolecular interactions of the oligonucleotides were affected by types of buffers because of different potassium concentrations, which are crucial for the formation of the G-quadruplex structure. Consequently, solution properties, such as solubility and viscosity, chemical stability, and antithrombin activity, were also influenced. Each instrumental analysis had a complemental role in investigating the higher-order structure of TBA and modified TBAs. The utility of each physicochemical characterization method during the preclinical developmental stages is also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Dicroísmo Circular , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Dicroísmo Circular/métodos , Oligonucleotídeos/química , Varredura Diferencial de Calorimetria/métodos , Viscosidade , Espectroscopia de Ressonância Magnética/métodos , Solubilidade , Termodinâmica , Quadruplex G , Estabilidade de Medicamentos , Humanos
4.
Phys Chem Chem Phys ; 26(18): 13532-13560, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38654597

RESUMO

As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.

5.
Mol Pharm ; 21(4): 1794-1803, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401048

RESUMO

Although nucleation is considered the first step in the crystallization of glass materials, the structure and properties of the nuclei are not understood well. Influence of nucleation on the structure and dynamics of celecoxib glass was evaluated in this study. The nuclei for Form III were induced by annealing the glass at freezing temperature, and their impact on the relaxation behavior was investigated using thermal analysis and broadband dielectric spectroscopy to find accelerated α relaxation and suppressed ß relaxation. In addition, observed after nucleation was a decrease in cooperativity of the molecular motion, presumably because of the appearance of void spaces in the glass structure. During long-term isothermal crystallization studies, crystal growth to Form III was accelerated in the presence of the nuclei, whereas this effect was less remarkable when a different crystal form dominated the crystallization behavior. These observations should provide more detailed insights into the nucleation mechanism and impact of nucleation on molecular dynamics including physical stability of pharmaceutical glasses. In addition, discussed is the remarkable acceleration of the crystallization rate of the celecoxib glass just below its Tg, which could be understood by diffusionless crystal growth.


Assuntos
Temperatura Baixa , Simulação de Dinâmica Molecular , Celecoxib , Cristalização/métodos , Vidro/química , Varredura Diferencial de Calorimetria
6.
Chem Commun (Camb) ; 60(16): 2152-2167, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38291864

RESUMO

Nanoarchitectonics, as a post-nanotechnology concept, constructs functional materials and structures using nanounits of atoms, molecules, and nanomaterials as materials. With the concept of nanoarchitectonics, asymmetric structures, and hierarchical organization, rather than mere assembly and organization of structures, can be produced, where rational physical and chemical communications will lead to the development of more advanced functional materials. Layer-by-layer assembly can be a powerful tool for this purpose, as exemplified in this feature paper. This feature article explores the possibility of constructing advanced functional systems based on recent examples of layer-by-layer assembly. We will illustrate both the development of more basic methods and more advanced nanoarchitectonics systems aiming towards practical applications. Specifically, the following sections will provide examples of (i) advancement in basics and methods, (ii) physico-chemical aspects and applications, (iii) bio-chemical aspects and applications, and (iv) bio-medical applications. It can be concluded that materials nanoarchitectonics based on layer-by-layer assembly is a useful method for assembling asymmetric structures and hierarchical organization, and is a powerful technique for developing functions through physical and chemical communication.

7.
Biomolecules ; 13(11)2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002321

RESUMO

Cationic liposomes, specifically 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposomes, serve as successful carriers for guanine-quadruplex (G4) structure-based cytosine-guanine oligodeoxynucleotides (CpG ODNs). The combined benefits of CpG ODNs forming a G4 structure and a non-viral vector carrier endow the ensuing complex with promising adjuvant properties. Although G4-CpG ODN-DOTAP complexes show a higher immunostimulatory effect than naked G4-CpG ODNs, the effects of the complex composition, especially charge ratios, on the production of the pro-inflammatory cytokines interleukin (IL)-6 and interferon (IFN)-α remain unclear. Here, we examined whether charge ratios drive the bifurcation of cytokine inductions in human peripheral blood mononuclear cells. Linear CpG ODN-DOTAP liposome complexes formed micrometer-sized positively charged agglomerates; G4-CpG ODN-DOTAP liposome complexes with low charge ratios (0.5 and 1.5) formed ~250 nm-sized negatively charged complexes. Notably, low-charge-ratio (0.5 and 1.5) complexes induced significantly higher IL-6 and IFN-α levels simultaneously than high-charge-ratio (2 and 2.5) complexes. Moreover, confocal microscopy indicated a positive correlation between the cellular uptake of the complex and amount of cytokine induced. The observed effects of charge ratios on complex size, surface charge, and affinity for factors that modify cellular-uptake, intracellular-activity, and cytokine-production efficiency highlight the importance of a rational complex design for delivering and controlling G4-CpG ODN activity.


Assuntos
Lipossomos , Propano , Humanos , Lipossomos/química , Propano/farmacologia , Leucócitos Mononucleares , Citocinas , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/química , Interleucina-6/farmacologia , Interferon-alfa/farmacologia
8.
Mol Pharm ; 20(8): 4050-4057, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37413788

RESUMO

The aqueous solubility of active pharmaceutical ingredients (APIs) is one of the most critical factors in determining the absorption of orally administered drugs. Amorphization of API may offer better drug absorption than the crystalline state owing to enhanced solubility. However, if crystal nuclei are formed during storage, they may develop into crystals upon contact with water, thus limiting the dissolution advantage. In an earlier study, we found that the nuclei of amorphous celecoxib (CEL) could be formed at freezing temperatures (FT) without further crystal growth. Following this finding, we compared the dissolution performances of amorphous CEL annealed at room temperature (RT, 25 °C) or FT (-20 °C). We found that only the RT-annealed CEL could achieve a supersaturated state effectively during the dissolution process, which could be explained by the fast conversion of the FT-annealed amorphous CEL to a crystalline state owing to the presence of nuclei. Investigation of the residual solids revealed that supersaturation could be maintained for a while after the appearance of the crystals, which could be explained by heterogeneous nucleation and competition between the dissolution of amorphous parts and crystallization. In addition, a new crystalline form of CEL was observed during dissolution.


Assuntos
Temperatura Baixa , Água , Celecoxib , Solubilidade , Cristalização , Água/química
9.
J Phys Chem B ; 127(26): 5967-5977, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37408472

RESUMO

In this study, nucleation/crystallization behaviors of indomethacin glass are discussed with emphasis on the fate of nuclei, which is explained using a notion of "rigid" and "flexible" nuclei. The observation was made mainly by thermal analysis of indomethacin glass after long-term annealing at various temperatures. Formation of nuclei was evaluated by observing cold crystallization behaviors of the annealed glasses, as they should be dominated by the "nuclei form" produced in the glass. Nuclei of forms α and γ, which have opposite stability trends, were found to appear over a wide temperature range. The nuclei of form α were stable even in the presence of other crystal forms, whereas those of form γ were likely to be easily integrated into other crystals during their growth, which was explained by a notion of rigid and flexible nuclei. Moreover, unconventionally fast crystallization in the glass-transition region and the finding of a new crystal form are also reported.

10.
Langmuir ; 39(29): 10001-10010, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433207

RESUMO

Lipid droplets are fat storage organelles that consist of a neutral lipid core surrounded by a phospholipid monolayer. Because of their important biological functions, reconstituting model lipid droplets in synthetic phospholipid membranes is of great interest. In the present study, we investigated the incorporation of triacylglycerol droplets into glass-supported phospholipid bilayers by using fluorescence microscopy. We adsorbed triolein emulsions onto a glass surface that was partially covered with planar bilayers. After adsorption, triolein droplets were found to be immobilized in the bilayer membrane. The volume of each bound droplet varied over time. Large droplets grew, whereas small droplets shrank. Additionally, data on fluorescence recovery after photobleaching obtained for a phospholipid probe indicate that phospholipids on and near triolein droplets were fully mobile. Furthermore, photobleaching data obtained for a triacylglycerol probe indicate that triolein molecules diffused between different droplets along the planar bilayer. These results demonstrate Ostwald ripening, where triolein molecules in a small droplet dissolved in the bilayer, diffused laterally, and eventually bound to the interfaces of larger droplets. We investigated the ripening rate by using the average of the cube root of the fluorescence emission obtained for individual droplets. The ripening slowed after the addition of trilinolein to the triolein phase. Finally, we investigated the time dependence of the size distributions of the triolein droplets. The distribution was initially nearly unimodal and subsequently became bimodal.

11.
J Pharm Sci ; 112(10): 2703-2716, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301322

RESUMO

High inter-laboratory reproducibility is required for conducting collaborative experiments among several laboratories. The primary aim of our evaluation of the physical stability of amorphous drugs, conducted in co-operation with eight laboratories, was to establish a protocol for isothermal storage tests to obtain data of the same quality from all the participating laboratories. Sharing a protocol that contained the same level of detail as the experimental section of general papers was insufficient for high inter-laboratory reproducibility. We investigated the causes of variations in the data from the various laboratories and restricted the protocol step-by-step to achieve high inter-laboratory reproducibility. The various experimentalists had very different levels of awareness regarding how to control the temperature of a sample as the samples were transferred into and out of thermostatic chambers. Specific instructions on how to conduct this operation, such as regarding the time required for the transfer and thermal protection of the container during the transfer, helped to reduce variation. Improved inter-laboratory reproducibility revealed that the physical stabilities of amorphous drugs differed when samples were prepared in differently shaped aluminum pans designed for various differential scanning calorimeters.


Assuntos
Nifedipino , Cristalização , Nifedipino/química , Reprodutibilidade dos Testes , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos
12.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559158

RESUMO

Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid-liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests.

13.
Int J Pharm ; 626: 122158, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058407

RESUMO

Amorphization is a powerful approach for improving the aqueous solubility and bioavailability of poorly water-soluble compounds. However, it can cause chemical and physical instability, the latter of which can lead to crystallization during storage, diminishing the solubility advantage of the amorphous state. As there is no standard method for predicting the physical stability of amorphous materials, a long-term stability study is needed in drug development. This study investigated the correlation between the physical stability of amorphous compounds and molecular mobility based on the assumption that physical stability is governed by the diffusional motion of a molecule. Model compounds were evaluated for crystallization onset time, structural relaxation time, fragility, and fictive temperature. The crystallization onset time of acetaminophen glass correlated with its relaxation time calculated from the Adam-Gibbs-Vogel equation; however, that of felodipine glass correlated with the relaxation time calculated from the Vogel-Tammann-Fulcher equation. The different crystallization tendencies of these compounds can be explained by the differences in the rate limiting steps in their crystallization processes, indicating the importance of distinguishing the critical process associated with crystallization. These findings will be useful for more accurate prediction of long-term physical stability of amorphous materials.


Assuntos
Acetaminofen , Felodipino , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Preparações Farmacêuticas , Água
14.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955337

RESUMO

Nanoarchitectonics integrates nanotechnology with various other fields, with the goal of creating functional material systems from nanoscale units such as atoms, molecules, and nanomaterials. The concept bears strong similarities to the processes and functions seen in biological systems. Therefore, it is natural for materials designed through nanoarchitectonics to truly shine in bio-related applications. In this review, we present an overview of recent work exemplifying how nanoarchitectonics relates to biology and how it is being applied in biomedical research. First, we present nanoscale interactions being studied in basic biology and how they parallel nanoarchitectonics concepts. Then, we overview the state-of-the-art in biomedical applications pursuant to the nanoarchitectonics framework. On this basis, we take a deep dive into a particular building-block material frequently seen in nanoarchitectonics approaches: fullerene. We take a closer look at recent research on fullerene nanoparticles, paying special attention to biomedical applications in biosensing, gene delivery, and radical scavenging. With these subjects, we aim to illustrate the power of nanomaterials and biomimetic nanoarchitectonics when applied to bio-related applications, and we offer some considerations for future perspectives.

15.
Langmuir ; 38(12): 3720-3728, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35289166

RESUMO

Phospholipid monolayers formed at oil-water interfaces are used for various biological applications. However, monolayer structures are not well understood. Herein, we investigated hydrocarbon partitioning in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine monolayers formed at hydrocarbon-water interfaces using fluorescence microscopy and pendant drop tensiometry. The monolayers strongly interacted with squalene, n-hexadecane, n-tetradecane, n-dodecane, n-decane, and n-butylcyclohexane. These alkane and alkylcyclohexane molecules remained within the monolayers during area compression. In contrast, the monolayers interacted weakly with n-pentylbenzene and n-butylbenzene. These alkylbenzenes were gradually removed from the monolayers upon area compression and were completely expelled at an area per lipid of ∼70 Å2. Surface pressure analysis indicated that the ability of hydrocarbons to penetrate the monolayers was enhanced in the order of n-butylbenzene < n-pentylbenzene < n-butylcyclohexane < n-hexadecane.


Assuntos
Fosfolipídeos , Água , Hidrocarbonetos , Fosfatidilcolinas/química , Fosfolipídeos/química , Propriedades de Superfície , Água/química
16.
ACS Appl Mater Interfaces ; 14(6): 8146-8156, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104116

RESUMO

Cost-effective copper conductive inks are considered as the most promising alternative to expensive silver conductive inks for use in printed electronics. However, the low stability and high sintering temperature of copper inks hinder their practical application. Herein, we develop rapidly customizable and stable copper-nickel complex inks that can be transformed in situ into uniform copper@nickel core-shell nanostructures by a self-organized process during low-temperature annealing and immediately sintered under photon irradiation to form copper-nickel alloy patterns on flexible substrates. The complex inks are synthesized within 15 min via a simple mixing process and are particle-free, air-stable, and compatible with large-area screen printing. The manufactured patterns exhibit a high conductivity of 19-67 µΩ·cm, with the value depending on the nickel content, and can maintain high oxidation resistance at 180 °C even when the nickel content is as low as 6 wt %. In addition, the printed copper-nickel alloy patterns exhibit high flexibility as a consequence of the local softening and mechanical anchoring effect between the metal pattern and the flexible substrate, showing strong potential in the additive manufacturing of highly reliable flexible electronics, such as flexible radio-frequency identification (RFID) tags and various wearable sensors.

17.
Langmuir ; 37(24): 7527-7535, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34115510

RESUMO

Phospholipid monolayers formed at oil-water interfaces have been used to explore biological interface properties. Thus, monolayer systems need to be quantitatively understood. Previously, we investigated the formation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) monolayers at silicone oil-water interfaces to determine the dependence of interfacial tension, γ, on the area per lipid, a, compared to that of the closely packed monolayers, acp. This study aims to develop a method to obtain the γ-a relationship from the γ-a/acp data by investigating POPC monolayers at the silicone oil-water and tricaprylin-water interfaces. Pendant drop tensiometry was used to obtain the dependence of γ on a/acp. Furthermore, by calculating the surface pressure, Π, from γ and multiplying a/acp with an estimated acp value, the dependence of Π on a was obtained. When a value approximately equal to the a of POPC bilayers was assigned to acp, the resultant Π-a profile partially or approximately completely overlapped with the Π-a isotherms obtained for the monolayers at the air-water interface using a Langmuir trough. The overlap for the silicone oil-water interface occurred at a ≤ 77 Å2, while that for the tricaprylin-water interface occurred in approximately the entire a region. The results indicate that the Π of the condensed monolayers is little affected by bulk oil. Thus, the γ-a relationship for the oil-water interface can be determined by comparing the compression isotherm with the one obtained for the air-water interface.


Assuntos
Fosfolipídeos , Água , Caprilatos , Fosfatidilcolinas , Óleos de Silicone , Silicones , Propriedades de Superfície , Tensão Superficial , Triglicerídeos
18.
Int J Pharm ; 600: 120491, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744450

RESUMO

α-Glycosyl rutin (Rutin-G), composed of a flavonol skeleton and sugar groups, is a promising non-polymeric additive for stabilizing amorphous drug formulations. In this study, the mechanism of the stabilization of the amorphous state of carbamazepine (CBZ) by Rutin-G was investigated. In comparison with hypromellose (HPMC), which is commonly used as a crystallization inhibitor for amorphous drugs, Rutin-G significantly stabilized amorphous CBZ. Moreover, the dissolution rate and the resultant supersaturation level of CBZ were significantly improved in the CBZ/Rutin-G spray-dried samples (SPDs) owing to the rapid dissolution property of Rutin-G. Differential scanning calorimetry measurement demonstrated a high glass transition temperature (Tg) of 186.4°C corresponding to Rutin-G. The CBZ/Rutin-G SPDs with CBZ weight ratios up to 80% showed single glass transitions, indicating the homogeneity of CBZ and Rutin-G. A solid-state NMR experiment using 13C- and 15N-labeled CBZ demonstrated the interaction between the flavonol skeleton of Rutin-G and the amide group of CBZ. A 1H-13C two-dimensional heteronuclear correlation NMR experiment and quantum mechanical calculations confirmed the presence of a possible hydrogen bond between the amino proton in CBZ and the carbonyl oxygen in the flavonol skeleton of Rutin-G. This specific hydrogen bond could contribute to the strong interaction between CBZ and Rutin-G, resulting in the high stability of amorphous CBZ in the CBZ/Rutin-G SPD. Hence, Rutin-G, a non-polymeric amorphous additive with high Tg, high miscibility with drugs, and rapid and pH-independent dissolution properties could be useful in the preparation of amorphous formulations.


Assuntos
Carbamazepina , Rutina , Varredura Diferencial de Calorimetria , Derivados da Hipromelose , Solubilidade , Temperatura de Transição
19.
Pharmaceutics ; 13(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562770

RESUMO

Amorphous solid dispersion (ASD) is one of the most promising formulation technologies for improving the oral absorption of poorly soluble drugs, where the maintenance of supersaturation plays a key role in enhancing the absorption process. However, quantitative prediction of oral absorption from ASDs is still difficult. Supersaturated solutions can cause liquid-liquid phase separation through the spinodal decomposition mechanism, which must be adequately comprehended to understand the oral absorption of drugs quantitatively. In this study, albendazole (ALZ) was formulated into ASDs using three types of polymers, poly(methacrylic acid-co-methyl methacrylate) (Eudragit) L100, Vinylpyrrolidone-vinyl acetate copolymer (PVPVA), and hydroxypropyl methylcellulose acetate succinate (HPMCAS). The oral absorption of ALZ in rats administered as ASD suspensions was not explained by dissolution study but was predicted using liquid-liquid phase separation concentration, which suggested that the absorption of ALZ was solubility-limited. The oral administration study in dogs performed using solid capsules demonstrated the low efficacy of ASDs because the absorption was likely to be limited by dissolution rate, which indicated the importance of designing the final dosage form of the ASDs.

20.
Langmuir ; 37(3): 1082-1088, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33440115

RESUMO

Giant unilamellar vesicles (GUVs) adsorb to a solid surface and rupture to form a planar bilayer patch. These bilayer patches are used to investigate the properties and functions of biological membranes. Therefore, it is crucial to understand the mechanisms of GUV adsorption. In this study, we investigate the adsorption of phase-separated GUVs on glass using fluorescence microscopy. GUVs containing liquid-ordered (Lo) and liquid-disordered (Ld) phases underwent domain sorting after adsorption. The Ld domain in the unbound region migrated to the highly curved region near the edge of the adsorbed region. Additionally, the Lo phase grew linearly along the edge of the adsorbed region, creating a thin ring-like domain. After the domain sorting event, the GUV ruptured to form a planar bilayer patch with circular-patterned domains in the initially adsorbed area. We found that domain sorting was promoted by increasing the extent of GUV deformation. These results suggest that both the Ld and Lo domains are reorganized for stabilizing the curved bilayer region in adsorbed GUVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA