RESUMO
INTRODUCTION: Teclistamab, a bispecific T-cell engaging antibody targeting B-cell maturation antigen (BCMA), is indicated for the treatment of relapsed or refractory multiple myeloma after at least four lines of therapy. It has boxed warnings for life threatening cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). To mitigate these risks, teclistamab is initiated using step-up doses. This article examines safety event rates following the implementation of a 2-day separation between step-up doses at one institution to streamline patient care. METHODS: This was a retrospective, single-center study encompassing all patients who received teclistamab within a 1-year period. The primary endpoint was the overall incidence of CRS and ICANS. Secondary endpoints included hospital length of stay, hematological toxicities, infection rates, among other adverse events. RESULTS: A total of 27 patients were included in the analysis and stratified into accelerated (days 1,3,5) or standard (days 1,4,7) dosing groups. CRS occurred in 48% (11) of patients for the accelerated dosing and 50% (2) for the standard dosing group. ICANS was seen in 17% (4) of patients in the accelerated dosing group and none in the standard dosing group. Average length of stay in the accelerated dose was 7.6 days versus 9.2 days in the standard dose group. CONCLUSION: Accelerated dose escalation of teclistamab yielded safety event rates comparable to those in the literature. These findings may support outpatient administration for teclistamab. Accelerated dose escalation strategy allowed for the optimization of hospitalization and resources.
RESUMO
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.
Assuntos
Leishmania , Parasitos , Animais , Leishmania/genética , Leishmania/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Parasitos/metabolismo , Poliaminas/metabolismo , Espermidina Sintase/metabolismoRESUMO
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host's immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents.