Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805943

RESUMO

This study aimed to induce bone-like tissue from immature muscular tissue (IMT) in vitro using commercially available recombinant human bone morphogenetic protein (rhBMP)-2, rhBMP-4, and rhBMP-7, and then implanting this tissue into a calvarial defect in rats to assess healing. IMTs were extracted from 20-day-old Sprague-Dawley (SD) fetal rats, placed on expanded polytetrafluoroethylene (ePTFE) with 10 ng/µL each of rhBMP-2, BMP-4, and BMP-7, and cultured for two weeks. The specimens were implanted into calvarial defects in 3-week-old SD rats for up to three weeks. Relatively strong radiopacity was observed on micro-CT two weeks after culture, and bone-like tissue, comprising osteoblastic cells and osteoids, was partially observed by H&E staining. Calcium, phosphorus, and oxygen were detected in the extracellular matrix using an electron probe micro analyzer, and X-ray diffraction patterns and Fourier transform infrared spectroscopy spectra of the specimen were found to have typical apatite crystal peaks and spectra, respectively. Furthermore, partial strong radiopacity and ossification were confirmed one week after implantation, and a dominant novel bone was observed after two weeks in the defect site. Thus, rhBMP-2, BMP-4, and BMP-7 differentiated IMT into bone-like tissue in vitro, and this induced bone-like tissue has ossification potential and promotes the healing of calvarial defects. Our results suggest that IMT is an effective tissue source for bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 7 , Engenharia Tecidual , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 7/farmacologia , Regeneração Óssea , Osteogênese , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Crânio/diagnóstico por imagem , Fator de Crescimento Transformador beta/farmacologia
2.
Cell Biol Int ; 40(10): 1116-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27425003

RESUMO

The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future.


Assuntos
Fibroblastos/citologia , Osteoblastos/citologia , Titânio/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Elétrons , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Congelamento , Manufaturas , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Propriedades de Superfície , Titânio/química
3.
J Mater Sci Mater Med ; 25(9): 2049-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24893861

RESUMO

Polyvinylidene chloride (PVDC) is a long chain carbon synthetic polymer. The objective of this study was to improve the bioactivity of PVDC films through surface modification using argon (Ar) ion bombardment to create Ar-modified PVDC films (Ar-PVDC) to address the clinical problems of guided bone regeneration (GBR), which is technique-sensitive, and low bone regenerative ability. First, the effects of Ar ion bombardment, a low temperature plasma etching technique widely used in industry, on PVDC film wettability, surface chemistry, and morphology were confirmed. Next, fibroblast-like and osteoblast-like cell attachment and proliferation on Ar-PVDC were assessed. As a preclinical in vivo study, Ar-PVDC was used to cover a critical-sized bone defect on rat calvaria and osteoconductivity was evaluated by micro-computed tomography analysis and histological examinations. We found that the contact angle of PVDC film decreased by 50° because of the production of -OH groups on the PVDC film surface, though surface morphological was unchanged at 30 min after Ar ion bombardment. We demonstrated that cell attachment increased by about 40% and proliferation by more than 140% because of increased wettability, and 2.4 times greater bone regeneration was observed at week 3 with Ar-PVDC compared with untreated PVDC films. These results suggest that Ar ion bombardment modification of PVDC surfaces improves osteoconductivity, indicating its potential to increase bone deposition during GBR.


Assuntos
Argônio , Regeneração Óssea , Cloreto de Polivinila/análogos & derivados , Proliferação de Células , Cloreto de Polivinila/farmacologia , Propriedades de Superfície , Molhabilidade , Microtomografia por Raio-X
4.
J Biomed Mater Res A ; 102(9): 3112-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24115406

RESUMO

The objective of this study was to induce bone formation from immature muscular tissue (IMT) in vitro, using bone morphogenetic proteins (BMPs) as a cytokine source and an expanded polytetrafluoroethylene (ePTFE) scaffold. In addition, cultured IMTs were implanted subcutaneously into Sprague-Dawley (SD) rats to determine their in vivo ossification potential. BMPs, extracted from bovine cortical bones, were applied to embryonic SD rat IMT cultures, before 2 weeks culture on ePTFE scaffolds. Osteoblast-like cells and osteoid tissues were partially identified by hematoxylin-eosin staining 2 weeks after culture. Collagen type I (Col-I), osteopontin (OP), and osteocalcin (OC) were detected in the osteoid tissues by immunohistochemical staining. OC gene expression remained low, but OP and Col-I were upregulated during the culture period. In vivo implanted IMTs showed slight radiopacity 1 week after implantation and strong radiopacity 2 and 3 weeks after implantation. One week after implantation, migration of numerous capillaries was observed and ossification was detected after 2 weeks by histological observation. These results suggest that IMTs are able to differentiate into bone-like tissue in vitro, with an ossification potential after implantation in vivo.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Músculos/efeitos dos fármacos , Músculos/transplante , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Masculino , Músculos/citologia , Politetrafluoretileno/química , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA