Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 112(8): 1265-1285.e10, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38377990

RESUMO

Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABAA receptors and subsequently enhances GABAA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2. This process increases H3K27me3 levels, which in turn suppresses the transcription of genes associated with G-protein-coupled receptor signaling. Thus, our findings shed light on the comprehensive cellular and molecular mechanisms in aPVT underlying the sustained antidepressant behavioral effects of ketamine metabolites. This study may support the development of potentially effective next-generation pharmacotherapies to promote sustained remission of stress-related psychiatric disorders.


Assuntos
Ketamina , Animais , Humanos , Ketamina/farmacologia , Simulação de Dinâmica Molecular , Antidepressivos/farmacologia , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Neuron ; 112(5): 786-804.e8, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38228137

RESUMO

Chronic stress is a major risk factor for psychiatric disorders, including depression. Although depression is a highly heterogeneous syndrome, it remains unclear how chronic stress drives individual differences in behavioral responses. In this study, we developed a subtyping-based approach wherein stressed male mice were divided into four subtypes based on their behavioral patterns of social interaction deficits and anhedonia, the core symptoms of psychiatric disorders. We identified three prefrontal cortical neuronal projections that regulate repeated stress-induced behavioral phenotypes. Among them, the medial prefrontal cortex (mPFC)→anterior paraventricular thalamus (aPVT) pathway determines the specific behavioral subtype that exhibits both social deficits and anhedonia. Additionally, we identified the circuit-level molecular mechanism underlying this subtype: KDM5C-mediated epigenetic repression of Shisa2 transcription in aPVT projectors in the mPFC led to social deficits and anhedonia. Thus, we provide a set of biological aspects at the cellular, molecular, and epigenetic levels that determine distinctive stress-induced behavioral phenotypes.


Assuntos
Anedonia , Transtornos Mentais , Humanos , Camundongos , Masculino , Animais , Neurônios , Córtex Pré-Frontal/fisiologia , Transtornos Mentais/metabolismo , Fenótipo , Estresse Psicológico/metabolismo
3.
Sci Adv ; 9(14): eade5397, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018397

RESUMO

Chronic stress increases the risk of developing psychiatric disorders, including mood and anxiety disorders. Although behavioral responses to repeated stress vary across individuals, the underlying mechanisms remain unclear. Here, we perform a genome-wide transcriptome analysis of an animal model of depression and patients with clinical depression and report that dysfunction of the Fos-mediated transcription network in the anterior cingulate cortex (ACC) confers a stress-induced social interaction deficit. Critically, CRISPR-Cas9-mediated ACC Fos knockdown causes social interaction deficits under stressful situation. Moreover, two classical second messenger pathways, calcium and cyclic AMP, in the ACC during stress differentially modulate Fos expression and regulate stress-induced changes in social behaviors. Our findings highlight a behaviorally relevant mechanism for the regulation of calcium- and cAMP-mediated Fos expression that has potential as a therapeutic target for psychiatric disorders related to stressful environments.


Assuntos
Cálcio , Proteínas Proto-Oncogênicas c-fos , Animais , Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Giro do Cíngulo/metabolismo , AMP Cíclico/metabolismo , Estresse Psicológico
4.
Biol Psychiatry Glob Open Sci ; 3(1): 87-98, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712563

RESUMO

Background: A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. Because treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods: We used the large variance in behavioral responses to long-term treatment with multiple classes of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and used virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety-like behaviors. Results: Cartpt expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic (gamma-aminobutyric acidergic) neurons of the anterior cingulate cortex led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions: These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the anterior cingulate cortex is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.

5.
Front Behav Neurosci ; 15: 749180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658809

RESUMO

Major depressive disorder (MDD) is a debilitating disease characterized by depressed mood, loss of interest or pleasure, suicidal ideation, and reduced motivation or hopelessness. Despite considerable research, mechanisms underlying MDD remain poorly understood, and current advances in treatment are far from satisfactory. The antidepressant effect of ketamine is among the most important discoveries in psychiatric research over the last half-century. Neurobiological insights into the ketamine's effects have shed light on the mechanisms underlying antidepressant efficacy. However, mechanisms underlying the rapid and sustained antidepressant effects of ketamine remain controversial. Elucidating such mechanisms is key to identifying new therapeutic targets and developing therapeutic strategies. Accumulating evidence demonstrates the contribution of the glutamatergic pathway, the major excitatory neurotransmitter system in the central nervous system, in MDD pathophysiology and antidepressant effects. The hypothesis of a connection among the calcium signaling cascade stimulated by the glutamatergic system, neural plasticity, and epigenetic regulation of gene transcription is further supported by its associations with ketamine's antidepressant effects. This review briefly summarizes the potential mechanisms of ketamine's effects with a specific focus on glutamatergic signaling from a multiscale perspective, including behavioral, cellular, molecular, and epigenetic aspects, to provide a valuable overview of ketamine's antidepressant effects.

6.
Front Mol Neurosci ; 14: 708004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276306

RESUMO

Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.

7.
iScience ; 24(5): 102504, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113835

RESUMO

Although stressful events predispose individuals to psychiatric disorders, such as depression, not all people who undergo a stressful life experience become depressed, suggesting that gene-environment interactions (GxE) determine depression risk. The ventral hippocampus (vHPC) plays key roles in motivation, sociability, anhedonia, despair-like behaviors, anxiety, sleep, and feeding, pointing to the involvement of this brain region in depression. However, the molecular mechanisms underlying the cross talk between the vHPC and GxE in shaping behavioral susceptibility and resilience to chronic stress remain elusive. Here, we show that Ca2+/calmodulin-dependent protein kinase IIß (CaMKIIß) activity in the vHPC is differentially modulated in GxE mouse models of depression susceptibility and resilience, and that CaMKIIß-mediated TARPγ-8 phosphorylation enhances the expression of AMPA receptor subunit GluA1 in the postsynaptic sites to enable stress resilience. We present previously missing molecular mechanisms underlying chronic stress-elicited behavioral changes, providing strategies for preventing and treating stress-related psychiatric disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA