Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Connect Tissue Res ; 65(3): 237-252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739041

RESUMO

PURPOSE/AIM OF STUDY: During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS: ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS: shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.


Assuntos
Diferenciação Celular , Condrócitos , Condrogênese , Via de Sinalização Wnt , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Condrogênese/efeitos dos fármacos , Linhagem Celular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
2.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628319

RESUMO

Osteoclasts, which resorb the bone, and osteoblasts, which form the bone, are the key cells regulating bone homeostasis. Osteoporosis and other metabolic bone diseases occur when osteoclast-mediated bone resorption is increased and bone formation by osteoblasts is decreased. Analyses of tyrosine kinase Src-knockout mice revealed that Src is essential for bone resorption by osteoclasts and suppresses bone formation by osteoblasts. Src-knockout mice exhibit osteopetrosis. Therefore, Src is a potential target for osteoporosis therapy. However, Src is ubiquitously expressed in many tissues and is involved in various biological processes, such as cell proliferation, growth, and migration. Thus, it is challenging to develop effective osteoporosis therapies targeting Src. To solve this problem, it is necessary to understand the molecular mechanism of Src function in the bone. Src expression and catalytic activity are maintained at high levels in osteoclasts. The high activity of Src is essential for the attachment of osteoclasts to the bone matrix and to resorb the bone by regulating actin-related molecules. Src also inhibits the activity of Runx2, a master regulator of osteoblast differentiation, suppressing bone formation in osteoblasts. In this paper, we introduce the molecular mechanisms of Src in osteoclasts and osteoblasts to explore its potential for bone metabolic disease therapy.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Homeostase , Camundongos , Osteoclastos/metabolismo , Osteoporose/metabolismo , Proteínas Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA