Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 99: 147-153, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29649565

RESUMO

Depurination is accelerated by heat and reactive oxygen species under physiological conditions. We previously reported that polyamines are involved in mitigation of heat shock and oxidative stresses through stimulation of the synthesis of heat shock and antioxidant proteins. This time, we investigated whether polyamines are directly involved in protecting nucleic acids from thermal depurination induced by high temperature. The suppressing efficiencies of depurination of DNA by spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 50%, 60% and 80%, respectively. Mg2+ also protected nucleic acids against depurination but to a lesser degree than polyamines. Longer unusual polyamines were more effective at protecting DNA against depurination compared to standard polyamines. The tRNA depurination suppressing efficiencies of spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 60%, 70% and 80%, respectively. Standard polyamines protected tRNA and ribosomes more effectively than DNA against thermal depurination. Branched polyamines such as mitsubishine and tetrakis(3-aminopropyl)ammonium also protected RNA more effectively than DNA against depurination. These results suggest that the suppressing effect of depurination of nucleic acids (DNA and RNA) depends on the types of polyamines: i.e. to maintain functional conformation of nucleic acids at high temperature, longer and branched polyamines play important roles in protecting nucleic acids from depurination compared to standard polyamines and Mg2+.


Assuntos
DNA/química , Poliaminas/química , Purinas/química , RNA de Transferência/química , Ribossomos/química , Temperatura Alta , Humanos , Conformação de Ácido Nucleico
2.
Sci Rep ; 5: 9762, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25985257

RESUMO

Recent advances have fundamentally changed the ways in which synthetic amino acids are incorporated into proteins, enabling their efficient and multiple-site incorporation, in addition to the 20 canonical amino acids. This development provides opportunities for fresh approaches toward addressing fundamental problems in bioengineering. In the present study, we showed that the structural stability of proteins can be enhanced by integrating bulky halogenated amino acids at multiple selected sites. Glutathione S-transferase was thus stabilized significantly (by 5.2 and 5.6 kcal/mol) with 3-chloro- and 3-bromo-l-tyrosines, respectively, incorporated at seven selected sites. X-ray crystallographic analyses revealed that the bulky halogen moieties filled internal spaces within the molecules, and formed non-canonical stabilizing interactions with the neighboring residues. This new mechanism for protein stabilization is quite simple and applicable to a wide range of proteins, as demonstrated by the rapid stabilization of the industrially relevant azoreductase.

3.
Protein Sci ; 20(1): 118-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21080422

RESUMO

The TAR RNA-binding Protein (TRBP) is a double-stranded RNA (dsRNA)-binding protein, which binds to Dicer and is required for the RNA interference pathway. TRBP consists of three dsRNA-binding domains (dsRBDs). The first and second dsRBDs (dsRBD1 and dsRBD2, respectively) have affinities for dsRNA, whereas the third dsRBD (dsRBD3) binds to Dicer. In this study, we prepared the single domain fragments of human TRBP corresponding to dsRBD1 and dsRBD2 and solved the crystal structure of dsRBD1 and the solution structure of dsRBD2. The two structures contain an α-ß-ß-ß-α fold, which is common to the dsRBDs. The overall structures of dsRBD1 and dsRBD2 are similar to each other, except for a slight shift of the first α helix. The residues involved in dsRNA binding are conserved. We examined the small interfering RNA (siRNA)-binding properties of these dsRBDs by isothermal titration colorimetry measurements. The dsRBD1 and dsRBD2 fragments both bound to siRNA, with dissociation constants of 220 and 113 nM, respectively. In contrast, the full-length TRBP and its fragment with dsRBD1 and dsRBD2 exhibited much smaller dissociation constants (0.24 and 0.25 nM, respectively), indicating that the tandem dsRBDs bind simultaneously to one siRNA molecule. On the other hand, the loop between the first α helix and the first ß strand of dsRBD2, but not dsRBD1, has a Trp residue, which forms hydrophobic and cation-π interactions with the surrounding residues. A circular dichroism analysis revealed that the thermal stability of dsRBD2 is higher than that of dsRBD1 and depends on the Trp residue.


Assuntos
RNA de Cadeia Dupla/química , Proteínas de Ligação a RNA/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Interferente Pequeno/química , Alinhamento de Sequência
4.
J Mol Biol ; 377(2): 421-30, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18258260

RESUMO

A phylogenetically conserved ribosomal protein L16p/L10e organizes the architecture of the aminoacyl tRNA binding site on the large ribosomal subunit. Eukaryotic L10 also exhibits a variety of cellular activities, and, in particular, human L10 is known as a putative tumor suppressor, QM. We have determined the 2.5-A crystal structure of the human L10 core domain that corresponds to residues 34-182 of the full-length 214 amino acids. Its two-layered alpha+beta architecture is significantly similar to those of the archaeal and bacterial homologues, substantiating a high degree of structural conservation across the three phylogenetic domains. A cation-binding pocket formed between alpha2 and beta 6 is similar to that of the archaeal L10 protein but appears to be better ordered. Previously reported L10 mutations that cause defects in the yeast ribosome are clustered around this pocket, indicating that its integrity is crucial for its role in L10 function. Characteristic interactions among Arg90-Trp171-Arg139 guide the C-terminal part outside of the central fold, implying that the eukaryote-specific C-terminal extension localizes on the outer side of the ribosome.


Assuntos
Células Eucarióticas , Dobramento de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteína Ribossômica L10 , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Homologia Estrutural de Proteína , Proteínas Supressoras de Tumor/classificação , Proteínas Supressoras de Tumor/genética
5.
Mol Cell ; 28(3): 434-45, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17996707

RESUMO

Ribosome binding factor A (RbfA) is a bacterial cold shock response protein, required for an efficient processing of the 5' end of the 16S ribosomal RNA (rRNA) during assembly of the small (30S) ribosomal subunit. Here we present a crystal structure of Thermus thermophilus (Tth) RbfA and a three-dimensional cryo-electron microscopic (EM) map of the Tth 30S*RbfA complex. RbfA binds to the 30S subunit in a position overlapping the binding sites of the A and P site tRNAs, and RbfA's functionally important C terminus extends toward the 5' end of the 16S rRNA. In the presence of RbfA, a portion of the 16S rRNA encompassing helix 44, which is known to be directly involved in mRNA decoding and tRNA binding, is displaced. These results shed light on the role played by RbfA during maturation of the 30S subunit, and also indicate how RbfA provides cells with a translational advantage under conditions of cold shock.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Thermus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/fisiologia
6.
Nucleic Acids Symp Ser (Oxf) ; (51): 369-70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18029740

RESUMO

In trans-translation, ribosome switches the template for protein synthesis from an mRNA to tmRNA. The molecular mechanism of trans-translation remains mysterious. In order to clarify how tmRNA move through the ribosome, we developed in vitro systems to monitor trans-translation as well as translation, which are composed of ribosome, elongation factors, tmRNA and SmpB all from Thermus thermophilus. In these systems, the early steps of trans-translation including trans-transfer and the resume codon decoding could be monitored. Using these systems, the function of ribosomal protein S1 which has been suggested to be involved in trans-translation was investigated.


Assuntos
Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-18007048

RESUMO

Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34-Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 A resolution and belongs to space group P3(1)21 or P3(2)21.


Assuntos
Proteínas Ribossômicas/química , Proteínas Supressoras de Tumor/química , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/metabolismo , Humanos , Proteína Ribossômica L10 , Proteínas Ribossômicas/isolamento & purificação , Proteínas Supressoras de Tumor/isolamento & purificação
8.
J Bacteriol ; 189(17): 6397-406, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17616598

RESUMO

The RimM protein has been implicated in the maturation of the 30S ribosomal subunit. It binds to ribosomal protein S19, located in the head domain of the 30S subunit. Multiple sequence alignments predicted that RimM possesses two domains in its N- and C-terminal regions. In the present study, we have produced Thermus thermophilus RimM in both the full-length form (162 residues) and its N-terminal fragment, spanning residues 1 to 85, as soluble proteins in Escherichia coli and have performed structural analyses by nuclear magnetic resonance spectroscopy. Residues 1 to 80 of the RimM protein fold into a single structural domain adopting a six-stranded beta-barrel fold. On the other hand, the C-terminal region of RimM (residues 81 to 162) is partly folded in solution. Analyses of 1H-15N heteronuclear single quantum correlation spectra revealed that a wide range of residues in the C-terminal region, as well as the residues in the vicinity of a hydrophobic patch in the N-terminal domain, were dramatically affected upon complex formation with ribosomal protein S19.


Assuntos
Proteínas Ribossômicas/química , Thermus thermophilus/química , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência , Thermus thermophilus/genética
10.
Structure ; 15(3): 289-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17355865

RESUMO

In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.


Assuntos
RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
11.
RNA ; 13(4): 503-10, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17299130

RESUMO

Transfer-messenger RNA (tmRNA) plays a dual role as a tRNA and an mRNA in trans-translation, during which the ribosome replaces mRNA with tmRNA encoding the tag-peptide. These processes have been suggested to involve several tmRNA-binding proteins, including SmpB and ribosomal protein S1. To investigate the molecular mechanism of trans-translation, we developed in vitro systems using purified ribosome, elongation factors, tmRNA and SmpB from Thermus thermophilus. A stalled ribosome in complex with polyphenylalanyl-tRNA(Phe) was prepared as a target of tmRNA. A peptidyl transfer reaction from polyphenylalanyl-tRNA(Phe) to alanyl-tmRNA was observed in an SmpB-dependent manner. The next peptidyl transfer to aminoacyl-tRNA occurred specifically to the putative resume codon for the tag-peptide, which was confirmed by introducing a mutation in the codon. Thus, the in vitro systems developed in this study are useful to investigate the early steps of trans-translation. Using these in vitro systems, we investigated the function of ribosomal protein S1, which has been believed to play a role in trans-translation. Although T. thermophilus S1 tightly bound to tmRNA, as in the case of Escherichia coli S1, it had little or no effect on the early steps of trans-translation.


Assuntos
Alanina/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Thermus thermophilus/metabolismo , Alanina/metabolismo , Sítios de Ligação , Códon , Escherichia coli/genética , Técnicas In Vitro , Mutação , Fenilalanina/genética , Fenilalanina/metabolismo , Ligação Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/isolamento & purificação , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética
12.
Nat Struct Mol Biol ; 13(10): 871-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16998488

RESUMO

Kasugamycin (Ksg) specifically inhibits translation initiation of canonical but not of leaderless messenger RNAs. Ksg inhibition is thought to occur by direct competition with initiator transfer RNA. The 3.35-A structure of Ksg bound to the 30S ribosomal subunit presented here provides a structural description of two Ksg-binding sites as well as a basis for understanding Ksg resistance. Notably, neither binding position overlaps with P-site tRNA; instead, Ksg mimics codon nucleotides at the P and E sites by binding within the path of the mRNA. Coupled with biochemical experiments, our results suggest that Ksg indirectly inhibits P-site tRNA binding through perturbation of the mRNA-tRNA codon-anticodon interaction during 30S canonical initiation. In contrast, for 70S-type initiation on leaderless mRNA, the overlap between mRNA and Ksg is reduced and the binding of tRNA is further stabilized by the presence of the 50S subunit, minimizing Ksg efficacy.


Assuntos
Aminoglicosídeos/farmacologia , Escherichia coli/química , Iniciação Traducional da Cadeia Peptídica , RNA Bacteriano/química , RNA Mensageiro/química , RNA de Transferência/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/química , Sítios de Ligação , Códon , Modelos Moleculares , Nucleotídeos/química , Estrutura Terciária de Proteína , RNA de Transferência/química , Relação Estrutura-Atividade
13.
Mol Cell ; 18(3): 319-29, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15866174

RESUMO

Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Subunidades Proteicas/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , RNA Ribossômico 16S/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/ultraestrutura , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
14.
Nucleic Acids Symp Ser (Oxf) ; (49): 101-2, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17150653

RESUMO

trans-translation is a rescue system for stalled ribosomes to terminate the translation for recycling of ribosome and lead the incomplete protein on the stalled ribosome to degradation. In trans-translation, several proteins and RNAs are involved. tmRNA and SmpB are only factors known to be essential for trans-translation. EF-Tu and EF-G functions in translation and also are seemed to function in trans-translation. Ribosomal protein S1 is known to bind tmRNA. In this study, we cloned the gene of tmRNA from Thermus thermophilus and analyzed the functions of factors involved in trans-translation in vitro.


Assuntos
Terminação Traducional da Cadeia Peptídica , RNA Bacteriano/química , Sequência de Bases , Escherichia coli/genética , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Paromomicina/farmacologia , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Thermus thermophilus/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-16508081

RESUMO

The crystal structure of APE2540, the putative trans-editing enzyme ProX from Aeropyrum pernix K1, was determined in a high-throughput manner. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 47.4, b = 58.9, c = 53.6 A, beta = 106.8 degrees. The structure was solved by the multiwavelength anomalous dispersion method at 1.7 A and refined to an R factor of 16.8% (Rfree = 20.5%). The crystal structure includes two protein molecules in the asymmetric unit. Each monomer consists of eight beta-strands and seven alpha-helices. A structure-homology search revealed similarity between the trans-editing enzyme YbaK (or cysteinyl-tRNAPro deacylase) from Haemophilus influenzae (HI1434; 22% sequence identity) and putative ProX proteins from Caulobacter crescentus (16%) and Agrobacterium tumefaciens (21%).


Assuntos
Aeropyrum/enzimologia , Aminoacil-tRNA Sintetases/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Cristalografia por Raios X , Haemophilus influenzae/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
16.
Nucleic Acids Res Suppl ; (3): 287-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14510493

RESUMO

tmRNA has a dual function both as tRNA and mRNA and facilitates trans-translation. We observed the tagging derived from tmRNA from Bacillus subtilis in vivo and in vitro. Our studies give progressive suggestions on the mechanism of trans-translation.


Assuntos
Bacillus subtilis/genética , Biossíntese de Proteínas , RNA Bacteriano/genética , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA