Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 88(2): 023501, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249485

RESUMO

The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

2.
Phys Rev E ; 94(4-1): 043203, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841504

RESUMO

We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a ^{22}Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small ^{22}Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(6 Pt 2): 066403, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21230743

RESUMO

Entropy production rate (EPR) is often effective to describe how a structure is self-organized in a nonequilibrium thermodynamic system. The "minimum EPR principle" is widely applicable to characterizing self-organized structures, but is sometimes disproved by observations of "maximum EPR states." Here we delineate a dual relation between the minimum and maximum principles; the mathematical representation of the duality is given by a Legendre transformation. For explicit formulation, we consider heat transport in the boundary layer of fusion plasma [Z. Yoshida and S. M. Mahajan, Phys. Plasmas 15, 032307 (2008)]. The mechanism of bifurcation and hysteresis (which are the determining characteristics of the so-called H-mode, a self-organized state of reduced thermal conduction) is explained by multiple tangent lines to a pleated graph of an appropriate thermodynamic potential. In the nonlinear regime, we have to generalize Onsager's dissipation function. The generalized function is no longer equivalent to EPR; then EPR ceases to be the determinant of the operating point, and may take either minimum or maximum values depending on how the system is driven.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA