Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 48(1): 103-118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780986

RESUMO

Clubroot is a devastating disease of Brassicaceae caused by the biotrophic protist Plasmodiophora brassicae. The progression of clubroot disease is modulated by the glucosinolate (GSL) profile of the host plant. GSL is hydrolysed by the enzyme myrosinase upon cell disruption and gives rise to metabolites like isothiocyanate, nitriles, thiocyanates, epithionitriles and oxazolidines. Some of these metabolites play important roles in the plant's defence mechanism. We identified 13 Myrosinase (Myro) and 28 Myrosinase-Binding Protein-like (MBP) genes from Brassica oleracea L. using a comparative genomics approach and characterised them through in silico analyses. We compared the expression patterns of these genes in a clubroot-susceptible line and a resistant line following inoculation with P. brassicae. Two BolMyro and 12 BolMBP genes were highly expressed in the susceptible line, whereas only one BolMyro and five BolMBP genes were highly expressed in the resistant line. Principal component analysis confirmed that specific GSL profiles and gene expression were modulated due to pathogen infection. Plants with higher levels of neoglucobrassicin, glucobrassicin and methooxyglucobrassicin produced disease symptoms and formed galls, whereas, plants with higher levels of sinigrin, hydroxyglucobrassicin and progoitrin produced less symptoms with almost no galls. Our results provide insights into the roles of Myro and MBP genes in GSL hydrolysis during P. brassicae infection, which will help for developing clubroot resistant cabbage lines.


Assuntos
Brassica , Plasmodioforídeos , Brassica/genética , Expressão Gênica , Glucosinolatos , Glicosídeo Hidrolases , Doenças das Plantas/genética
2.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486099

RESUMO

The obligate biotroph Plasmodiophora brassicae causes clubroot disease in oilseeds and vegetables of the Brassicaceae family, and cytokinins play a vital role in clubroot formation. In this study, we examined the expression patterns of 17 cytokinin-related genes involved in the biosynthesis, signaling, and degradation in Chinese cabbage inoculated with the Korean pathotype group 4 isolate of P. brassicae, Seosan. This isolate produced the most severe clubroot symptoms in Chinese cabbage cultivar "Bullam-3-ho" compared to three other Korean geographical isolates investigated. BrIPT1, a cytokinin biosynthesis gene, was induced on Day 1 and Day 28 in infected root tissues and the upregulation of this biosynthetic gene coincided with the higher expression of the response regulators BrRR1, on both Days and BrRR6 on Day 1 and 3. BrRR3 and 4 genes were also induced during gall enlargement on Day 35 in leaf tissues. The BrRR4 gene, which positively interact with phytochrome B, was consistently induced in leaf tissues on Day 1, 3, and 14 in the inoculated plants. The cytokinin degrading gene BrCKX3-6 were induced on Day 14, before gall initiation. BrCKX2,3,6 were induced until Day 28 and their expression was downregulated on Day 35. This insight improves our current understanding of the role of cytokinin signaling genes in clubroot disease development.


Assuntos
Citocininas/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Plasmodioforídeos/genética , Plasmodioforídeos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta , Raízes de Plantas , República da Coreia , Transdução de Sinais
3.
PLoS One ; 13(3): e0194356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547671

RESUMO

Plant mitochondrial genomes (mtDNAs) vary in sequence structure. We assembled the Brassica oleracea var. capitata mtDNA using a mean coverage depth of 25X whole genome sequencing (WGS) and confirmed the presence of eight contigs/fragments by BLASTZ using the previously reported KJ820683 and AP012988 mtDNA as reference. Assembly of the mtDNA sequence reads resulted in a circular structure of 219,975 bp. Our assembled mtDNA, NCBI acc. no. KU831325, contained 34 protein-coding genes, 3 rRNA genes, and 19 tRNA genes with similarity to the KJ820683 and AP012988 reference mtDNA. No large repeats were found in the KU831325 assembly. However, KU831325 showed differences in the arrangement of bases at different regions compared to the previously reported mtDNAs. In the reference mtDNAs KJ820683 and AP012988, contig/fragment number 4 is partitioned into two contigs/fragments, 4a and 4b. However, contig/fragment number 4 was a single contig/fragment with 29,661 bp in KU831325. PCR and qRT-PCR using flanking markers from separate parts of contig/fragment number 4 confirmed it to be a single contig/fragment. In addition, genome re-alignment of the plastid genome and mtDNAs supported the presence of heteroplasmy and reverse arrangement of the heteroplasmic blocks within the other mtDNAs compared to KU831325 that might be one of the causal factors for its diversity. Our results thus confirm the existence of different mtDNAs in diverse B. oleracea subspecies.


Assuntos
Brassica/genética , Sequenciamento do Exoma/métodos , Variação Genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Brassica/classificação , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genes Mitocondriais/genética , Filogenia
4.
Genes (Basel) ; 9(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443955

RESUMO

Lilies (Lilium sp.) are commercially important horticultural crops widely cultivated for their flowers and bulbs. Here, we conducted large-scale data mining of the lily transcriptome to develop transcription factor (TF)-associated microsatellite markers (TFSSRs). Among 216,768 unigenes extracted from our sequence data, 6966 unigenes harbored simple sequence repeats (SSRs). Seventy-one SSRs were associated with TF genes, and these were used to design primers and validate their potential as markers. These 71 SSRs were accomplished with 31 transcription factor families; including bHLH, MYB, C2H2, ERF, C3H, NAC, bZIP, and so on. Fourteen highly polymorphic SSRs were selected based on Polymorphic Information Content (PIC) values and used to study genetic diversity and population structure in lily accessions. Higher genetic diversity was observed in Longiflorum compared to Oriental and Asiatic populations. Lily accessions were divided into three sub-populations based in our structure analysis, and an un-rooted neighbor-joining tree effectively separated the accessions according to Asiatic, Oriental, and Longiflorum subgroups. Finally, we showed that 46 of the SSR-associated genes were differentially expressed in response to Botrytiselliptica infection. Thus, our newly developed TFSSR markers represent a powerful tool for large-scale genotyping, high-density and comparative mapping, marker-aided backcrossing, and molecular diversity analysis of Lilium sp.

5.
BMC Genomics ; 18(1): 885, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145809

RESUMO

BACKGROUND: Protein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them. RESULTS: We have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1-1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5-2 gene for ABA stress, and BrPDI1-4, 6-1 and 9-2 were putative candidate genes for both cold and chilling injury stresses. CONCLUSIONS: Our findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses.


Assuntos
Brassica rapa/genética , Genoma de Planta , Família Multigênica , Isomerases de Dissulfetos de Proteínas/genética , Motivos de Aminoácidos , Brassica rapa/enzimologia , Brassica rapa/metabolismo , Cromossomos de Plantas , Temperatura Baixa , Éxons , Perfilação da Expressão Gênica , Íntrons , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Isomerases de Dissulfetos de Proteínas/classificação , Domínios Proteicos , Estresse Fisiológico/genética , Sintenia
6.
BMC Plant Biol ; 17(1): 23, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122509

RESUMO

BACKGROUND: Plants contain a range of aquaporin (AQP) proteins, which act as transporter of water and nutrient molecules through living membranes. AQPs also participate in water uptake through the roots and contribute to water homeostasis in leaves. RESULTS: In this study, we identified 59 AQP genes in the B. rapa database and Br135K microarray dataset. Phylogenetic analysis revealed four distinct subfamilies of AQP genes: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Microarray analysis showed that the majority of PIP subfamily genes had differential transcript abundance between two B. rapa inbred lines Chiifu and Kenshin that differ in their susceptibility to cold. In addition, all BrPIP genes showed organ-specific expression. Out of 22 genes, 12, 7 and 17 were up-regulated in response to cold, drought and salt stresses, respectively. In addition, 18 BrPIP genes were up-regulated under ABA treatment and 4 BrPIP genes were up-regulated upon F. oxysporum f. sp. conglutinans infection. Moreover, all BrPIP genes showed down-regulation under waterlogging stress, reflecting likely the inactivation of AQPs controlling symplastic water movement. CONCLUSIONS: This study provides a comprehensive analysis of AQPs in B. rapa and details the expression of 22 members of the BrPIP subfamily. These results provide insight into stress-related biological functions of each PIP gene of the AQP family, which will promote B. rapa breeding programs.


Assuntos
Aquaporinas/genética , Brassica rapa/genética , Genes de Plantas , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Éxons , Perfilação da Expressão Gênica , Íntrons , Oxigênio/metabolismo , Filogenia , Análise Serial de Proteínas , Análise de Sequência de DNA , Estresse Fisiológico
7.
Funct Plant Biol ; 44(7): 739-750, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480603

RESUMO

Calcium signals act as a second messenger in plant responses to various abiotic stresses, which regulate a range of physiological processes. Calcium-binding proteins, like calcineurin B-like (CBL) proteins, belong to a unique group of calcium sensors that play a role in calcium signalling. However, their identities and functions are unknown in Chinese cabbage. In this study, 17 CBL genes were identified from the Brassica rapa L. (Chinese cabbage) database and Br135K microarray datasets. They were used to construct a phylogenetic tree with known CBL proteins of other species. Analysis of genomic distribution and evolution revealed different gene duplication in Chinese cabbage compared to Arabidopsis. The microarray expression analysis showed differential expression of BrCBL genes at various temperatures. Organ-specific expression was observed by RT-PCR, and qRT-PCR analyses revealed responsiveness of BrCBL genes to cold, drought and salt stresses. Our findings confirm that CBL genes are involved in calcium signalling and regulate responses to environmental stimuli, suggesting this family gene have crucial role to play in plant responses to abiotic stresses. The results facilitate selection of candidate genes for further functional characterisation. In addition, abiotic stress-responsive genes reported in this study might be exploited for marker-aided backcrossing of Chinese cabbage.

8.
Front Plant Sci ; 7: 936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446164

RESUMO

The TIFY family is a plant-specific group of proteins with a diversity of functions and includes four subfamilies, viz. ZML, TIFY, PPD, and JASMONATE ZIM-domain (JAZ) proteins. TIFY family members, particularly JAZ subfamily proteins, play roles in biological processes such as development and stress and hormone responses in Arabidopsis, rice, chickpea, and grape. However, there is no information about this family in any Brassica crop. This study identifies 36 TIFY genes in Brassica rapa, an economically important crop species in the Brassicaceae. An extensive in silico analysis of phylogenetic grouping, protein motif organization and intron-exon distribution confirmed that there are four subfamilies of BrTIFY proteins. Out of 36 BrTIFY genes, we identified 21 in the JAZ subfamily, seven in the TIFY subfamily, six in ZML and two in PPD. Extensive expression profiling of 21 BrTIFY JAZs in various tissues, especially in floral organs and at different flower growth stages revealed constitutive expression patterns, which suggest that BrTIFY JAZ genes are important during growth and development of B. rapa flowers. A protein interaction network analysis also pointed to association of these proteins with fertility and defense processes of B. rapa. Using a low temperature-treated whole-genome microarray data set, most of the JAZ genes were found to have variable transcript abundance between the contrasting inbred lines Chiifu and Kenshin of B. rapa. Subsequently, the expression of all 21 BrTIFY JAZs in response to cold stress was characterized in the same two lines via qPCR, demonstrating that nine genes were up-regulated. Importantly, the BrTIFY JAZs showed strong and differential expression upon JA treatment, pointing to their probable involvement in JA-mediated growth regulatory functions, especially during flower development and stress responses. Additionally, BrTIFY JAZs were induced in response to salt, drought, Fusarium, ABA, and SA treatments, and six genes (BrTIFY3a, 3b, 6a, 9a, 9b, and 9c) were identified to have co-responsive expression patterns. The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of TIFY genes in stress resistance and different developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate TIFY genes for genetic engineering of B. rapa.

9.
Plant Physiol Biochem ; 104: 200-15, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27038155

RESUMO

MYB proteins comprise a large family of plant transcription factors that play regulatory roles in different biological processes such as plant development, metabolism, and defense responses. To gain insight into this gene superfamily and to elucidate its roles in stress resistance, we performed a comprehensive genome-wide identification, characterization, and expression analysis of MYB genes in Chinese cabbage (Brassica rapa ssp. pekinensis). We identified 475 Chinese cabbage MYB genes, among which most were from R2R3-MYB (256 genes) and MYB-related (202) subfamilies. Analysis of sequence characteristics, phylogenetic classification, and protein motif structures confirmed the existence of several categories (1R, 2R, 3R, 4R, and 5R) of Chinese cabbage MYB genes, which is comparable with MYB genes of other crops. An extensive in silico functional analysis, based on established functional properties of MYB genes from different crop species, revealed 11 and four functional clades within the Chinese cabbage R2R3-MYB and MYB-related subfamilies, respectively. In this study, we reported a MYB-like group within the MYB-related subfamily contains 77 MYB genes. Expression analysis using low temperature-treated whole-genome microarray data revealed variable transcript abundance of 1R/2R/3R/4R/5R-MYB genes in 11 clusters between two inbred lines of Chinese cabbage, Chiifu and Kenshin, which differ in cold tolerance. In further validation tests, we used qRT-PCR to examine the cold-responsive expression patterns of 27 BrMYB genes; surprisingly, the MYB-related genes were induced more highly than the R2R3-MYB genes. In addition, we identified 10 genes with corresponsive expression patterns from a set of salt-, drought-, ABA-, JA-, and SA-induced R2R3-MYB genes. We identified 11 R2R3-MYBs functioning in resistance against biotic stress, including 10 against Fusarium oxysporum f.sp. conglutinans and one against Pectobacterium carotovoram subsp. caratovorum. Furthermore, based on organ-specific expression data, we identified nine R2R3-MYBs that were constitutively expressed in male reproductive tissue, which may provide an important key for studying male sterility in Chinese cabbage. The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MYB genes in stress resistance in addition to their growth regulatory functions, ultimately providing the basis for functional characterization and exploitation of the candidate MYB genes for genetic engineering of Chinese cabbage.


Assuntos
Brassica rapa/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Organogênese/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Brassica rapa/efeitos dos fármacos , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/fisiologia , Análise por Conglomerados , Simulação por Computador , Flores/efeitos dos fármacos , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Organogênese/efeitos dos fármacos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Plant Physiol Biochem ; 92: 92-104, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931321

RESUMO

BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops.


Assuntos
Adaptação Fisiológica , Brassica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Brassinosteroides/biossíntese , Temperatura Baixa , Secas , Flores/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Proteínas de Plantas/metabolismo , Transdução de Sinais , Cloreto de Sódio/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
11.
BMC Genomics ; 16: 178, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25881193

RESUMO

BACKGROUND: MADS-box transcription factors (TFs) are important in floral organ specification as well as several other aspects of plant growth and development. Studies on stress resistance-related functions of MADS-box genes are very limited and no such functional studies in Brassica rapa have been reported. To gain insight into this gene family and to elucidate their roles in organ development and stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in B. rapa. RESULTS: Whole-genome survey of B. rapa revealed 167 MADS-box genes, which were categorized into type I (Mα, Mß and Mγ) and type II (MIKC(c) and MIKC*) based on phylogeny, protein motif structure and exon-intron organization. Expression analysis of 89 MIKC(c) and 11 MIKC* genes was then carried out. In addition to those with floral and vegetative tissue expression, we identified MADS-box genes with constitutive expression patterns at different stages of flower development. More importantly, from a low temperature-treated whole-genome microarray data set, 19 BrMADS genes were found to show variable transcript abundance in two contrasting inbred lines of B. rapa. Among these, 13 BrMADS genes were further validated and their differential expression was monitored in response to cold stress in the same two lines via qPCR expression analysis. Additionally, the set of 19 BrMADS genes was analyzed under drought and salt stress, and 8 and 6 genes were found to be induced by drought and salt, respectively. CONCLUSION: The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MADS-box genes in stress resistance in addition to their growth and developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate genes for genetic engineering of B. rapa.


Assuntos
Brassica/genética , Genoma de Planta , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Motivos de Aminoácidos/genética , Arabidopsis/genética , Mapeamento Cromossômico , Temperatura Baixa , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Domínio MADS/classificação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Filogenia , Proteínas de Plantas/classificação , Reação em Cadeia da Polimerase em Tempo Real , Sais/farmacologia , Estresse Fisiológico/genética
12.
Mol Genet Genomics ; 290(4): 1299-311, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25618423

RESUMO

The Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I-IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications.


Assuntos
Brassica/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Brassica/efeitos dos fármacos , Brassica/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Temperatura Baixa , Secas , Éxons , Fusarium/fisiologia , Perfilação da Expressão Gênica , Íntrons , Dados de Sequência Molecular , Família Multigênica , Pectobacterium carotovorum/fisiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/classificação
13.
Mol Genet Genomics ; 290(1): 79-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25149146

RESUMO

WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed BrWRKY genes might be potential resources for molecular breeding of Brassica crops against abiotic and biotic stresses and several genes, which showed differential expressions commonly in response to several stresses, might be useful for multiple stress resistance. These findings would also be helpful in resolving the complex regulatory mechanism of WRKY genes in stress resistance and for this further functional genomics study of these potential genes in different Brassica crops is essential.


Assuntos
Brassica rapa/genética , Brassica rapa/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Simulação por Computador , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA