Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493668

RESUMO

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s-1 up to 3 km ⋅ s-1 Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s-1 Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level-a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Assuntos
Biomarcadores/análise , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Gelo/análise , Lua , Origem da Vida , Saturno , Atmosfera , Estudos de Viabilidade
2.
MethodsX ; 8: 101239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434762

RESUMO

Enceladus is a prime candidate in the solar system for in-depth astrobiological studies searching for habitability and life because it has a liquid water ocean with significant organic content and ongoing cryovolcanic activity. The presence of ice plumes that jet up through fissures in the ice crust covering the sub-surface ocean, enables remote sampling and in-situ analysis via a fly-by mission. However, capture and transport of organic materials to organic analyzers presents distinctive challenges as it is unknown whether, and to what extent, organic molecules imbedded in ice particles can be captured and survive hypervelocity impacts. This manuscript provides a fluorescence microscopic method to parametrically determine the amount of an organic fluorescent tracer dye, Pacific Blue™ (PB) deposited on a metallic surface. This method can be used to measure the capture and survival outcomes of terrestrial hypervelocity impact experiments where an ice projectile labeled with Pacific Blue impacts a soft metal surface. This work is an important step in the advancement of instruments like the Enceladus Organic Analyzer for detecting biosignatures in an Enceladus plume fly-by mission. An apparatus consisting of a substrate humidification shroud coupled with an epifluorescence microscope with CCD detector is developed to measure the intensity of quantitatively deposited Pacific Blue droplets under controlled humidity. Calibration curves are produced that relate the integrated fluorescence intensity of humidified PB droplets on metal foils to the number of PB molecules deposited. To demonstrate the utility of this method, our calibrations are used to analyze and quantitate organic capture and survival (up to 11% capture efficiency) following ice particle impacts at a velocity of 1.7 km/s on an aluminum substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA